Mathematical Control and Related Fields (MCRF)

Local controllability of 1D Schrödinger equations with bilinear control and minimal time
Pages: 125 - 160, Issue 2, June 2014

doi:10.3934/mcrf.2014.4.125      Abstract        References        Full text (657.7K)           Related Articles

Karine Beauchard - CMLS, Ecole Polytechnique, 91 128 Palaiseau cedex, France (email)
Morgan Morancey - CMLS, Ecole Polytechnique, 91 128 Palaiseau cedex, France (email)

1 R. Adami and U. Boscain, Controllability of the Schroedinger Equation via Intersection of Eigenvalues, Proceedings of the 44rd IEEE Conference on Decision and Control December 12-15, 2005, Seville, (Spain). Also on 'Control Systems: Theory, Numerics and Applications, Roma, Italia 30 Mar - 1 Apr 2005, POS, Proceeding of science.
2 J. Ball, J. Marsden and M. Slemrod, Controllability for distributed bilinear systems, SIAM J. Control and Optim., 20 (1982), 575-597.       
3 L. Baudouin, A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics, Port. Math. (N.S.), 63 (2006), 293-325.       
4 L. Baudouin, O. Kavian and J.-P. Puel, Regularity for a Schrödinger equation with singular potential and application to bilinear optimal control, J. of Differential Equations, 216 (2005), 188-222.       
5 L. Baudouin and J. Salomon, Constructive solutions of a bilinear control problem for a Schrödinger equation, Systems and Control Letters, 57 (2008), 453-464.       
6 K. Beauchard, Local Controllability of a 1-D Schrödinger equation, J. Math. Pures et Appl., 84 (2005), 851-956.       
7 K. Beauchard, Controllability of a quantum particle in a 1D variable domain, ESAIM:COCV, 14 (2008), 105-147.       
8 K. Beauchard, Local controllability and non controllability for a 1D wave equation with bilinear control, J. Diff. Eq., 250 (2010), 2064-2098.       
9 K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well, J. Functional Analysis, 232 (2006), 328-389.       
10 K. Beauchard and C. Laurent, Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl., 94 (2010), 520-554.       
11 K. Beauchard and M. Mirrahimi, Practical stabilization of a quantum particle in a one-dimensional infinite square potential well, SIAM J. Contr. Optim., 48 (2009), 1179-1205.       
12 J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research, Springer-Verlag, New York, 2000.       
13 U. Boscain, M. Caponigro, T. Chambrion and M. Sigalotti, A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule, Communications on Mathematical Physics, 311 (2012), 423-455.       
14 N. Boussaïd, M. Caponigro and T. Chambrion, Weakly-coupled systems in quantum control, IEEE Transactions on Automatic Control, 58 (2013), 2205-2216. arXiv:1109.1900.       
15 E. Cancès, C. L. Bris and M. Pilot, Contrôle optimal bilinéaire d'une équation de Schrödinger, CRAS Paris, 330 (2000), 567-571.       
16 E. Cerpa and E. Crépeau, Boundary controlability for the non linear korteweg-de vries equation on any critical domain, Ann. IHP Analyse Non Linéaire, 26 (2009), 457-475.       
17 T. Chambrion, P. Mason, M. Sigalotti and M. Boscain, Controllability of the discrete-spectrum Schrödinger equation driven by an external field, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 329-349.       
18 J.-M. Coron, On the small-time local controllability of a quantum particule in a moving one-dimensional infinite square potential well, C. R. Acad. Sciences Paris, Ser. I, 342 (2006), 103-108.       
19 J.-M. Coron, Control and Nonlinearity, vol. 136, Mathematical Surveys and Monographs, 2007.       
20 S. Ervedoza and J.-P. Puel, Approximate controllability for a system of schrödinger equations modeling a single trapped ion, Ann.IHP: Nonlinear Analysis, 26 (2009), 2111-2136.       
21 R. Ilner, H. Lange and H. Teismann, Limitations on the control of schrödinger equations, ESAIM:COCV, 12 (2006), 615-635.       
22 A. Y. Khapalov, Bilinear controllability properties of a vibrating string with variable axial load and damping gain, Dyn. Contin. Impuls. Syst. Ser A Math Anal., 10 (2003), 721-743.       
23 A. Y. Khapalov, Controllability properties of a vibrating string with variable axial load, Discrete Contin. Dyn. Syst., 11 (2004), 311-324.       
24 A. Y. Khapalov, Reachability of nonnegative equilibrium states for the semilinear vibrating string by varying its axial load and the gain of damping, ESAIM:COCV, 12 (2006), 231-252.       
25 M. Mirrahimi, Lyapunov control of a quantum particle in a decaying potential, Ann. IHP: Nonlinear Analysis, 26 (2009), 1743-1765.       
26 V. Nersesyan, Growth of Sobolev norms and controllability of Schrödinger equation, Comm. Math. Phys., 290 (2009), 371-387.       
27 V. Nersesyan, Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications, Ann. IHP Nonlinear Analysis, 27 (2010), 901-915.       
28 V. Nersesyan and H. Nersisyan, Global exact controllability in infinite time of Schrödinger equation, J. Math. Pures et Appl., 97 (2012), 295-317.       
29 V. Nersesyan and H. Nersisyan, Global exact controllability in infinite time of Schrödinger equation: multidimensional case, (preprint).
30 G. Turinici, On the controllability of bilinear quantum systems, In C. Le Bris and M. Defranceschi, editors, Mathematical Models and Methods for Ab Initio Quantum Chemistry, 75-92, Lecture Notes in Chem., 74, Springer, Berlin, 2000.       

Go to top