Journal of Industrial and Management Optimization (JIMO)

CVaR proxies for minimizing scenario-based Value-at-Risk
Pages: 1109 - 1127, Issue 4, October 2014

doi:10.3934/jimo.2014.10.1109      Abstract        References        Full text (996.4K)           Related Articles

Helmut Mausser - Quantitative Research, Risk Analytics, Business Analytics, IBM, 185 Spadina Avenue, Toronto, ON M5T2C6, Canada (email)
Oleksandr Romanko - Quantitative Research, Risk Analytics, Business Analytics, IBM, 185 Spadina Avenue, Toronto, ON M5T2C6, Canada (email)

1 C. Acerbi and D. Tasche, Expected Shortfall: A natural coherent alternative to Value at Risk, Economic Notes, 31 (2002), 379-388.
2 C. Acerbi and D. Tasche, On the coherence of expected shortfall, Journal of Banking & Finance, 26 (2002), 1487-1503.
3 B. C. Arnold, N. Balakrishnan and H. N. Nagaraja, A First Course in Order Statistics, SIAM Publishers, Philadelphia, PA, 2008.       
4 P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk, Mathematical Finance, 9 (1999), 203-228.       
5 V. Brazauskas, B. L. Jones, M. L. Puri and R. Zitikis, Estimating conditional tail expectation with actuarial applications in view, Journal of Statistical Planning and Inference, 138 (2008), 3590-3604.       
6 J. Daníelsson, B. N. Jorgensen, G. Samorodnitsky, M. Sarma and C. G. de Vries, Subadditivity re-examined: The case for Value-at-Risk, preprint, London School of Economics, 2005.
7 V. DeMiguel, L. Garlappi, F. J. Nogales and R. Uppal, A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms, Management Science, 55 (2009), 798-812.
8 K. Høyland, M. Kaut and S. W. Wallace, A heuristic for moment-matching scenario generation, Computational Optimization and Applications, 24 (2003), 169-185.       
9 N. Larsen, H. Mausser and S. Uryasev, Algorithms for optimization of Value-at-Risk, in Financial Engineering, E-commerce and Supply Chain (eds. P. Pardalos and V. K. Tsitsiringos), Kluwer Academic Publishers, Norwell, MA, (2002), 19-46.
10 J. Luedtke and S. Ahmed, A sample approximation approach for optimization with probabilistic constraints, SIAM Journal on Optimization, 19 (2008), 674-699.       
11 H. Mausser and O. Romanko, Bias, exploitation and proxies in scenario-based risk minimization, Optimization, 61 (2012), 1191-1219.       
12 H. Mausser and D. Rosen, Efficient risk/return frontiers for credit risk, Journal of Risk Finance, 2 (2000), 66-78.
13 K. Natarajan, D. Pachamanova and M. Sim, Incorporating asymmetric distribution information in robust value-at-risk optimization, Management Science, 54 (2008), 573-585.
14 A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM Journal on Optimization, 17 (2006), 969-996.       
15 B. K. Pagnoncelli, S. Ahmed and A. Shapiro, Computational study of a chance constrained portfolio selection problem, Optimization Online, 2008. Available from: http://www.optimization-online.org/DB_HTML/2008/02/1899.html.
16 B. K. Pagnoncelli, S. Ahmed and A. Shapiro, Sample average approximation method for chance constrained programming: Theory and applications, Journal of Optimization Theory and Applications, 142 (2009), 399-416.       
17 R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Journal of Risk, 2 (2000), 21-41.
18 R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions, Journal of Banking & Finance, 26 (2002), 1443-1471.
19 D. Wuertz and H. Katzgraber, Precise Finite-Sample Quantiles of the Jarque-Bera Adjusted Lagrange Multiplier Test, MPRA Paper No. 19155, University of Munich, 2009. Available from: http://mpra.ub.uni-muenchen.de/19155/.

Go to top