Wellposedness results for the NavierStokes equations in the rotational framework
Pages: 5143  5151,
Issue 11/12,
November/December
2013
doi:10.3934/dcds.2013.33.5143 Abstract
References
Full text (396.6K)
Related Articles
Matthias Hieber  Fachbereich Mathematik, Angewandte Analysis, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, Germany (email)
Sylvie Monniaux  LATP UMR 6632, CMI, Technopôle de ChâteauGombert, 39 rue Frédéric JoliotCurie, 13453 Marseille Cedex 13, France (email)
1 
A. Babin, A. Mahalov and B. Nicolaenko, Regularity and integrability for the 3D Euler and NavierStokes equations for uniformly rotating fluids, Asympt. Anal., 15 (1997), 103150. 

2 
A. Babin, A. Mahalov and B. Nicolaenko, 3D NavierStokes and Euler equations with initial data characterized by uniformly large vorticity, Indiana Univ. Math. J., 50 (2001), 135. 

3 
I. Bejenaru and T. Tao, Sharp wellposedness and illposedness results for a quadratic nonlinear Schrödinger equation, J. Funct. Anal., 223 (2006), 228259. 

4 
J. Bourgain and N. Pavlović, Illposedness of the NavierStokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 22332247. 

5 
M. Cannone, Harmonic analysis tools for solving the incompressible NavierStokes equations, Handbook of Mathematical Fluid Dynamics, (eds. S. Friedlander and D. Serre), Elsevier, 3 (2003). 

6 
C. Cao and E. Titi, Global wellposedness of the three dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Annals of Math., 166 (2007), 245267. 

7 
J.Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, "Mathematical Geophysics," Oxford University Press, 2006. 

8 
J. A. Goldstein, "Semigroups of Operators and Applications," Oxford University Press, 1985. 

9 
Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the NavierStokes equations with nondecaying initial data, Quaderni di Math., 4 (1999), 2868. 

10 
Y. Giga, K. Inui, A. Mahalov and S. Matsui, NavierStokes equations in a rotating frame in $R^3$ with initial data nondecreasing at infinity, Hokkaido Math. J., 35 (2006), 321364. 

11 
Y. Giga, K. Inui, A. Mahalov and J. Saal, Uniform global solvability of the NavierStokes equations for nondecaying data, Indiana Univ. Math. J., 57 (2008), 27752792. 321364. 

12 
Y. Giga, K. Inui, A. Mahalov, S. Matsui and J. Saal, Rotating NSequations in $\mathbbR^3_+$ with initial data nondecreasing at infinity: The Ekman boundary layer problem, Arch. Rat. Mech. Anal., (2007). 

13 
M. Hieber and S. Monniaux, Global solutions of the NavierStokesCoriolis system in domains, preprint, 2012. 

14 
M. Hieber and O. Sawada, The NavierStokes equations in $\mathbbR^n$ with linearly growing initial data, Arch. Rational Mech. Anal., 175 (2005), 269285. 

15 
M. Hieber and Y. Shibata, The FujitaKato approach to the NavierStokes equations in the rotational framework, Math. Z., 265 (2010), 481491. 

16 
T. Iwabuchi and R. Takada, Global wellposedness and illposedness for the NavierStokes equations with the Coriolis force in function spaces of Besov type, preprint, 2011. 

17 
T. Iwabuchi and R. Takada, Dispersive effects of the Coriolis force and the local wellposedness for the NavierStokes equations in the rotational framework, preprint, 2011. 

18 
T. Kato, Strong $L^p$solutions of NavierStokes equations in $\mathbbR^n$ with applications to weak solutions, Math. Z., 187 (1984), 471480. 

19 
H. Koch and D. Tataru, Wellposedness for the NavierStokes equations, Advances Math., 157 (2001), 2235. 

20 
P. Konieczny and T. Yoneda, On the dispersive effect of the Coriolis force for stationary NavierStokes equations, J. Diff. Equ., 250 (2011), 38593873. 

21 
A. Majda, "Introduction to PDEs and Waves for the Atmosphere and Ocean," Courant Lecture Notes in Math., 2003. 

22 
S. Monniaux, NavierStokes equations in arbitrary domains: The FujitaKato scheme, Math. Res. Lett., 13 (2006), 455461. 

23 
T. Yoneda, Longtime solvability of the NavierStokes equations in a rotating frame with spatially almost periodic large data, Arch. Rational Mech. Anal., 200 (2011), 225237. 

Go to top
