`a`
Mathematical Biosciences and Engineering (MBE)
 

Transition of interaction outcomes in a facilitation-competition system of two species
Pages: 1463 - 1475, Issue 5/6, October/December 2017

doi:10.3934/mbe.2017076      Abstract        References        Full text (573.9K)           Related Articles

Yuanshi Wang - School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou 510275, China (email)
Hong Wu - School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou 510275, China (email)

1 M. Hernandez and I. Barradas, Variation in the outcome of population interactions: Bifurcations and catastrophes, J. Math. Biol., 46 (2003), 571-594.       
2 J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998.       
3 T. Kawai and M. Tokeshi, Variable modes of facilitation in the upper intertidal: Goose barnacles and mussels, Marine Ecology Progress Series, 272 (2004), 203-213.
4 T. Kawai and M. Tokeshi, Asymmetric coexistence: Bidirectional abiotic and biotic effects between goose barnacles and mussels, Journal of Animal Ecology, 75 (2006), 928-941.
5 T. Kawai and M. Tokeshi, Testing the facilitation-competition paradigm under the stress-gradient hypothesis: Decoupling multiple stress factors, Proceedings of the Royal Society B: Biological Sciences, 274 (2007), 2503-2508.
6 X. Li, H. Wang and Y. Kuang, Global analysis of a stoichiometric producer-grazer model with Holling type functional responses, J. Math. Biol., 63 (2011), 901-932.       
7 Z. Liu, P. Magal and S. Ruan, Oscillations in age-structured models of consumer-resource mutualisms, Disc. Cont. Dyna. Systems-B, 21 (2016), 537-555.       
8 C. Neuhauser and J. Fargione, A mutualism-parasitism continuum model and its application to plant-mycorrhizae interactions, Ecological Modelling, 177 (2004), 337-352.
9 S. Soliveres, C. Smit and F. T. Maestre, Moving forward on facilitation research: Response to changing environments and effects on the diversity, functioning and evolution of plant communities, Biological Reviews. 90 (2015), 297-313.
10 K. Tainaka, Stationary pattern of vortices or strings in biological systems: lattice version of the Lotka-Volterra model, Physical Review Letters, 63 (1989), 2688-2691.
11 Y. Wang, H. Wu and J. Liang, Dynamics of a lattice gas system of three species, Commun. Non. Sci. Nume. Simu., 39 (2016), 38-57.       
12 H. Yokoi, T. Uehara, T. Kawai, Y. Tateoka and K. Tainaka, Lattice and lattice gas models for commensalism: Two shellfishes in intertidal Zone[J], Scientific Research Publishing, Open Journal of Ecology, 4 (2014), 671-677.

Go to top