`a`
Mathematical Biosciences and Engineering (MBE)
 

On the continuity of the function describing the times of meeting impulsive set and its application
Pages: 1399 - 1406, Issue 5/6, October/December 2017

doi:10.3934/mbe.2017072      Abstract        References        Full text (363.9K)           Related Articles

Sanyi Tang - College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062, China (email)
Wenhong Pang - School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China (email)

1 E. M. Bonotto and M. Federson, Limit sets and the Poincare Bendixson theorem in impulsive semidynamical systems, J. Differ. Equ., 244 (2008), 2334-2349.       
2 K. Ciesielski, On semicontinuity in impulsive dynamical systems, Bulletin of The Polish Academy of Sciences Mathematics, 52 (2004), 71-80.       
3 G. B. Ermentrout and N. Kopell, Multiple pulse interactions and averaging in systems of coupled neural oscillators, J. Math. Biol., 29 (1991), 195-217.       
4 R. A. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-466.
5 G. Gabor, The existence of viable trajectories in the state-dependent impusive systems, Nonlinear Anal. TMA, 72 (2010), 3828-3836.       
6 G. Gabor, Viable periodic solutions in state-dependent impulsive problems, Collect. Math., 66 (2015), 351-365.       
7 P. Goel and B. Ermentrout, Synchrony, stability, and firing patterns in pulse-coupled oscillators, Physica D, 163 (2002), 191-216.       
8 M. Z. Huang, J. X. Li, X. Y. Song and H. J. Guo, Modeling impulsive injections of insulin: Towards aritificial pancreas, SIAM J. Appl. Math., 72 (2012), 1524-1548.       
9 S. K. Kaul, On impulsive semidynamical systems, J. Math. Anal. Appl., 150 (1990), 120-128.       
10 J. H. Liang, S. Y. Tang, J. J. Nieto and R. A. Cheke, Analytical methods for detecting pesticide switches with evolution of pesticide resistance, Math. Biosci., 245 (2013), 249-257.       
11 B. Liu, Y. Tian and B. L. Kang, Dynamics on a Holling II predator-prey model with state-dependent impulsive control, International J. Biomath., 5 (2012), 1260006, 18 pp.       
12 L. F. Nie, Z. D. Teng and L. Hu, The dynamics of a chemostat model with state dependent impulsive effects, Int. J. Bifurcat. Chaos, 21 (2011), 1311-1322.       
13 J. C. Panetta, A mathematical model of periodically pulsed chemotherapy: Tumor recurrence and metastasis in a competitive environment, Bull. Math. Biol., 58 (1996), 425-447.
14 B. Shulgin, L. Stone and Z. Agur, Pulse vaccination strategy in the SIR epidemic model, Bull. Math. Biol., 60 (1998), 1123-1148.
15 L. Stone, B. Shulgin and Z. Agur, Theoretical examination of the pulse vaccination policy in the SIR epidemic model, Math. Comput. Model., 31 (2000), 207-215.       
16 K. B. Sun, Y. Tian, L. S. Chen and A. Kasperski, Nonlinear modelling of a synchronized chemostat with impulsive state feedback control, Math. Comput. Modelling, 52 (2010), 227-240.       
17 S. Y. Tang and R. A. Cheke, State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences, J. Math. Biol., 50 (2005), 257-292.       
18 S. Y. Tang and R. A. Cheke, Models for integrated pest control and their biological implications, Math. Biosci., 215 (2008), 115-125.       
19 S. Y. Tang and L. S. Chen, Modelling and analysis of integrated pest management strategy, Discrete Contin. Dyn. Syst. B, 4 (2004), 759-768.       
20 S. Y. Tang, J. H. Liang, Y. S. Tan and R. A. Cheke, Threshold conditions for interated pest management models with pesticides that have residual effects, J. Math. Biol., 66 (2013), 1-35.       
21 S. Y. Tang, W. H. Pang, R. A. Cheke and J. H. Wu, Global dynamics of a state-dependent feedback control system, Advances in Difference Equations, 2015 (2015), 70pp.       
22 S. Y. Tang, G. Y. Tang and R. A. Cheke, Optimum timing for integrated pest management: Modeling rates of pesticide application and natural enemy releases, J. Theor. Biol., 264 (2010), 623-638.       
23 S. Y. Tang, B. Tang, A. L. Wang and Y. N. Xiao, Holling II predator-prey impulsive semi-dynamic model with complex Poincare map, Nonlinear Dynamics, 81 (2015), 1575-1596.       
24 S. Y. Tang, Y. N. Xiao, L. S. Chen and R. A. Cheke, Integrated pest management models and their dynamical behaviour, Bull. Math. Biol., 67 (2005), 115-135.       

Go to top