`a`
Mathematical Biosciences and Engineering (MBE)
 

A bacteriophage model based on CRISPR/Cas immune system in a chemostat
Pages: 1361 - 1377, Issue 5/6, October/December 2017

doi:10.3934/mbe.2017070      Abstract        References        Full text (489.7K)           Related Articles

Mengshi Shu - Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Mathematics and Statistics, Southwest University, Chongqing 400715, China (email)
Rui Fu - Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Mathematics and Statistics, Southwest University, Chongqing 400715, China (email)
Wendi Wang - Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China (email)

1 L. J. Allen and S. W. Vidurupola, Impact of variability in stochastic models of bacteria-phage dynamics applicable to phage therapy, Stochastic Analysis and Applications, 32 (2014), 427-449.       
2 I. Aviram and A. Rabinovitch, Bactria and lytic phage coexistence in a chemostat with periodic nutrient supply, Bulletin of Mathematical Biology, 76 (2014), 225-244.       
3 E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection, Mathematical Biosciences, 149 (1998), 57-76.       
4 E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection with latency period, Nonlinear Analysis: Real World Applications, 2 (2001), 35-74.       
5 B. J. Bohannan and R. E. Lenski, Linking genetic change to community evolution: Insights from studies of bacteria and bacteriophage, Ecology Letters, 3 (2000), 362-377.
6 S. J. Brouns, M. M. Jore and M. Lundgren, Small CRISPR RNAs guide antiviral defense in prokaryotes, Science, 321 (2008), 960-964.
7 A. Buckling and M. Brockhurst, Bacteria-virus coevolution, Evolutionary Systems Biology, 751 (2012), 347-370.
8 J. J. Bull, C. S. Vegge and M. Schmerer, Phenotypic resistance and the dynamics of bacterial escape from phage control, PloS One, 9 (2014), e94690.
9 B. J. Cairns, A. R. Timms and V. Jansen, Quantitative models of vitro bacteriophage-host dynamics and their application to phage therapy, PLoS Pathog, 5 (2009), e1000253.
10 A. Calsina and J. J. Rivaud, A size structured model for bacteria-phages interaction, Nonlinear Analysis: Real World Applications, 15 (2014), 100-117.       
11 A. Campbell, Conditions for existence of bacteriophages, Evolution, 15 (1961), 153-165.
12 C. L. Carrillo, R. J. Atterbury and A. El-Shibiny, Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens, Applied and Environmental Microbiology, 71 (2005), 6554-6563.
13 J. J. Dennehy, What can phages tell us about host-pathogen coevolution?, International Journal of Evolutionary Biology, 2012 (2012), Article ID 396165, 12 pages.
14 H. Deveau, J. E. Garneau and S. Moineau, CRISPR/Cas system and its role in phage-bacteria interactions, Annual Review of Microbiology, 64 (2010), 475-493.
15 A. Dhooge, W. Govaerts and Y. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans Math Software, 29 (2003), 141-164.       
16 P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosciences, 180 (2002), 29-48.       
17 D. H. Duckworth, Who discovered bacteriophage?, Bacteriological Reviews, 40 (1976), 793-802.
18 P. C. Fineran and E. Charpentier, Memory of viral infections by CRISPR-Cas adaptive immune systems: Acquisition of new information, Virology, 434 (2012), 202-209.
19 J. E. Garneau and M. Dupuis, The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA, Nature, 468 (2010), 67-71.
20 P. Gómez and A. Buckling, Bacteria-phage antagonistic coevolution in soil, Science, 332 (2011), 106-109.
21 S. A. Gourley and Y. Kuang, A delay reaction-diffusion model of the spread of bacteriophage infection, SIAM Journal of Applied Mathematics, 65 (2004), 550-566.       
22 J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1993.       
23 Z. Han and H. L. Smith, Bacteriophage-resistant and bacteriophage-sensitive bacteria in a chemostat, Mathematical Biosciences and Engineering, 9 (2012), 737-765.       
24 S. B. Hsu, S. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, Applied Mathematics, 32 (1977), 366-383.       
25 S. B. Hsu, Limiting behavior for competing species, SIAM Journal on Applied Mathematics, 34 (1978), 760-763.       
26 P. Horvath and R. Barrangou, CRISPR/Cas the immune system of bacteria and archaea, Science, 327 (2010), 167-170.
27 J. Iranzo, A. E. Lobkovsky and Y. I. Wolf, Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR-Cas in an explicit ecological context, Journal of Bacteriology, 195 (2013), 3834-3844.
28 B. R. Levin, F. M. Stewart and L. Chao, Resource-limited growth, competition, and predation: A model, and experimental studies with bacteria and bacteriophage, American Naturalist, 111 (1977), 3-24.
29 B. R. Levin, Nasty viruses, costly plasmids, population dynamics, and the conditions for establishing and maintaining CRISPR-mediated adaptive immunity in bacteria, PLoS Genet, 6 (2010), e1001171.
30 B. R. Levin, S. Moineau and M. Bushman, The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity, PLoS Genet, 9 (2013), e1003312.
31 T. Li, Analysis of bacterial immune system-A review, Acta Microbiologica Ssinica, 51 (2011), 1297-1303.
32 M. Lin, H. F. Huo and Y. N. Li, A competitive model in a chemostat with nutrient recycling and antibiotic treatment, Nonlinear Analysis: Real World Applications, 13 (2012), 2540-2555.       
33 Y. Ma and H. Chang, A review on immune system of the bacteria and its self versus non-self discrimination, Chinese Veterinary Science, 42 (2012), 657-660.
34 L. A. Marraffini and E. J. Sontheimer, Self versus non-self discrimination during CRISPR RNA-directed immunity, Nature, 463 (2010), 568-571.
35 S. Matsuzaki, M. Rashel and J. Uchiyama, Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases, Journal of Infection and Chemotherapy, 11 (2005), 211-219.
36 K. Northcott and M. Imran, Competition in the presence of a virus in an aquatic system: an SIS model in the chemostat, Journal of Mathematical Biology, 64 (2012), 1043-1086.       
37 L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 7. Springer-Verlag, New York, 1993.       
38 L. M. Proctor and J. A. Fuhrman, Viral mortality of marine bacteria and cyanobacteria, Nature, 343 (1990), 60-62.
39 J. Reeks, J. H. Naismith and M. F. White, CRISPR interference: A structural perspective, Biochemical Journal, 453 (2013), 155-166.
40 G. Robledo, F. Grognard and J. L. Gouzé, Global stability for a model of competition in the chemostat with microbial inputs, Nonlinear Analysis: Real World Applications, 13 (2012), 582-598.       
41 K. D. Seed and D. W. Lazinski, A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity, Nature, 494 (2013), 489-491.
42 H. L. Smith and H. R. Thieme, Persistence of bacteria and phages in a chemostat, Journal of Mathematical Biology, 64 (2012), 951-979.       
43 H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, Journal of Mathematical Biology, 30 (1992), 755-763.       
44 H. R. Thieme, Persistence under relaxed point-dissipativity with application to an endemic model, SIAM J. Math. Anal.,24 (1993), 407-435.       
45 R. A. Usmani, Applied Linear Algebra, Marcel Dekker, New York , 1987.       
46 W. Wang and X. Zhao, An epidemic model in a patchy environment, Mathematical Biosciences, 190 (2004), 97-112.       
47 R. J. Weld, C. Butts and J. A. Heinemann, Models of phage growth and their applicability to phage therapy, Journal of Theoretical Biology, 227 (2004), 1-11.
48 X. Zhao, Dynamical Systems in Population Biology, $2^{nd}$ edition, Springer-Verlag, London, 2003.       

Go to top