Modeling coinfection of Ixodes tickborne pathogens
Pages: 1301  1316,
Issue 5/6,
October/December
2017
doi:10.3934/mbe.2017067 Abstract
References
Full text (1920.3K)
Related Articles
Yijun Lou  Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China (email)
Li Liu  School of Information Engineering, Guangdong Medical University, Dongguan, Guangdong 523808, China (email)
Daozhou Gao  Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China (email)
1 
M. E. Adelson, R. V. S. Rao and R. C. Tilton et al., Prevalence of Borrelia burgdorferi, Bartonella spp., Babesia microti, and Anaplasma phagocytophila in Ixodes scapularis ticks collected in Northern New Jersey, J. Cli. Micro., 42 (2004), 27992801. 

2 
F. R. Adler, J. M. PearceDuvet and M. D. Dearing, How host population dynamics translate into timelagged prevalence: An investigation of Sin Nombre virus in deer mice, Bull. Math. Biol., 70 (2008), 236252. 

3 
C. Alvey, Z. Feng and J. Glasser, A model for the coupled disease dynamics of HIV and HSV2 with mixing among and between genders, Math. Biosci., 265 (2015), 82100. 

4 
E. A. Belongia, Epidemiology and impact of coinfections acquired from Ixodes ticks, VectorBorne and Zoonotic Dis., 2 (2002), 265273. 

5 
O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of nextgeneration matrices for compartmental epidemic models, J. R. Soc. Interface, 5 (2009), 113. 

6 
M. A. DiukWasser, E. Vannier and P. J. Krause, Coinfection by Ixodes tickborne pathogens: Ecological, epidemiological, and clinical consequences, Trends Para., 32 (2016), 3042. 

7 
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 2948. 

8 
G. Fan, Y. Lou, H. R. Thieme and J. Wu, Stability and persistence in ODE models for populations with many stages, Math. Biosci. Eng., 12 (2015), 661686. 

9 
G. Fan, H. R. Thieme and H. Zhu, Delay differential systems for tick population dynamics, J. Math. Biol., 71 (2015), 10171048. 

10 
D. Gao, Y. Lou and S. Ruan, A periodic RossMacdonald model in a patchy environment, Dis. Cont. Dyn. Syst.B, 19 (2014), 31333145. 

11 
D. Gao, T. C. Porco and S. Ruan, Coinfection dynamics of two diseases in a single host population, J. Math. Anal. Appl., 442 (2016), 171188. 

12 
E. J. Goldstein, C. Thompson, A. Spielman and P. J. Krause, Coinfecting deerassociated zoonoses: Lyme disease, babesiosis, and ehrlichiosis, Clin. Inf. Dis., 33 (2001), 676685. 

13 
L. Halos, T. Jamal and R. Maillard et al., Evidence of Bartonella sp. in questing adult and nymphal Ixodes ricinus ticks from France and coinfection with Borrelia burgdorferi sensu lato and Babesia sp., Veterinary Res., 361 (2005), 7987. 

14 
J. M. Heffernan, Y. Lou and J. Wu, Range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi by migratory birds, Dis. Cont. Dyn. Syst.B, 19 (2014), 31473167. 

15 
M. H. Hersh, R. S. Ostfeld and D. J. McHenry et al., Coinfection of blacklegged ticks with Babesia microti and Borrelia burgdorferi is higher than expected and acquired from small mammal hosts, PloS one, 9 (2014), e99348. 

16 
M. W. Hirsch, H. L. Smith and X.Q. Zhao, Chain transitivity, attractivity and strong repellors for semidynamical systems, J. Dyn. Differ. Equ., 13 (2001), 107131. 

17 
Y. Lou, J. Wu and X. Wu, Impact of biodiversity and seasonality on Lymepathogen transmission, Theo. Biol. Med. Modell., 11 (2014), 50. 

18 
Y. Lou and X.Q. Zhao, Modelling malaria control by introduction of larvivorous fish, Bull. Math. Biol., 73 (2011), 23842407. 

19 
P. D. Mitchell, K. D. Reed and J. M. Hofkes, Immunoserologic evidence of coinfection with Borrelia burgdorferi, Babesia microti, and human granulocytic Ehrlichia species in residents of Wisconsin and Minnesota, J. Cli. Biol., 34 (1996), 724727. 

20 
S. Moutailler, C. V. Moro and E. Vaumourin et al., Coinfection of ticks: The rule rather than the exception, PLoS Negl. Trop. Dis., 10 (2016), e0004539. 

21 
J. M. Mutua, F. B. Wang and N. K. Vaidya, Modeling malaria and typhoid fever coinfection dynamics, Math. Biosci., 264 (2015), 128144. 

22 
N. H. Ogden, L. StOnge and I. K. Barker et al., Risk maps for range expansion of the Lyme disease vector, Ixodes scapularis, in Canada now and with climate change, Int. J. Heal. Geog., 7 (2008), 24. 

23 
A. R. Plourde and E. M. Bloch, A literature review of Zika virus, Emerg. Inf. Dise., 22 (2016), 11851192. 

24 
H. C. Slater, M. Gambhir, P. E. Parham and E. Michael, Modelling coinfection with malaria and lymphatic filariasis, PLoS Comput. Biol., 9 (2013), e1003096, 14pp. 

25 
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Providence, RI: Math. Surveys Monogr., 41, AMS, 1995. 

26 
F. E. Steiner, R. R. Pinger and C. N. Vann et al., Infection and coinfection rates of Anaplasma phagocytophilum variants, Babesia spp., Borrelia burgdorferi, and the rickettsial endosymbiont in Ixodes scapularis (Acari: Ixodidae) from sites in Indiana, Maine, Pennsylvania, and Wisconsin, J. Med. Entom., 45 (2008), 289297. 

27 
G. Stinco and S. Bergamo, Impact of coinfections in Lyme disease, Open Dermatology J., 10 (2016), 5561. 

28 
S. J. Swanson, D. Neitzel, K. D. Reed and E. A. Belongia, Coinfections acquired from Ixodes ticks, Cli. Micro. Rev., 19 (2006), 708727. 

29 
B. Tang, Y. Xiao and J. Wu, Implication of vaccination against dengue for Zika outbreak, Sci. Rep., 6 (2016), 35623. 

30 
H. R. Thieme, Convergence results and a PoincareBendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755763. 

31 
W. Wang and X.Q. Zhao, Spatial invasion threshold of Lyme disease, SIAM J. Appl. Math., 75 (2015), 11421170. 

32 
X. Wu, V. R. Duvvuri and Y. Lou et al., Developing a temperaturedriven map of the basic reproductive number of the emerging tick vector of Lyme disease Ixodes scapularis in Canada, J. Theo. Biol., 319 (2013), 5061. 

33 
X.Q. Zhao, Dynamical Systems in Population Biology, New York: Springer, 2003. 

34 
X.Q. Zhao and Z. Jing, Global asymptotic behavior in some cooperative systems of functionaldifferential equations, Canad. Appl. Math. Quart., 4 (1996), 421444. 

Go to top
