`a`
Mathematical Biosciences and Engineering (MBE)
 

Theoretical investigation on models of circadian rhythms based on dimerization and proteolysis of PER and TIM
Pages: 1247 - 1259, Issue 5/6, October/December 2017

doi:10.3934/mbe.2017064      Abstract        References        Full text (477.5K)           Related Articles

Jifa Jiang - Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China (email)
Qiang Liu - Department of Mathematics, University of Science and Technology of China, Hefei 230026, China (email)
Lei Niu - Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China (email)

1 R. Allada, N. E. White, W. V. So, J. C. Hall and M. Rosbash, A mutant Drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless, Cell, 93 (1998), 791-804.
2 K. Bae, C. Lee, D. Sidote, K-Y. Chuang and I. Edery, Circadian regulation of a Drosophila homolog of the mammalian clock gene: PER and TIM function as positive regulators, Mol. Cell. Biol., 18 (1998), 6142-6151.
3 T. K. Darlington, K. Wager-Smith, M. F. Ceriani, D. Staknis, N. Gekakis, T. D. L. Steeves, C. J. Weitz, J. S. Takahashi and S. A. Kay, Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim, Science, 280 (1998), 1599-1603.
4 A. Eskin, S. J. Yeung and M. R. Klass, Requirement for protein synthesis in the regulation of a circadian rhythm by serotonin, Proc. Natl. Acad. Sci. USA, 81 (1984), 7637-7641.
5 N. Gekakis, L. Saez, A.-M. Delahaye-Brown, M. P. Myers, A. Sehgal, M. W. Young and C. J. Weitz, Isolation of timeless by PER protein interaction: Defective interaction between timeless protein and long-period mutant $\mbox{PER}^L$, Science, 270 (1995), 811-815.
6 A. Goldbeter, A model for circadian oscillations in the Drosophila period protein (PER), Proc. R. Soc. Lond. B, 261 (1995), 319-324.
7 P. E. Hardin, J. C. Hall and M. Rosbash, Feedback of the Drosophila Period gene product on circadian cycling of its messenger RNA levels, Nature, 343 (1990), 536-540.
8 M. W. Hirsch, Systems of differential equations which are competitive or cooperative. I: Limit sets, SIAM J. Math. Anal., 13 (1982), 167-179.       
9 M. W. Hirsch, Systems of differential equations that are competitive and cooperative. IV: Structural stability in three dimensional systems, SIAM J. Math. Anal., 21 (1990), 1225-1234.       
10 Z. J. Huang, K. D. Curtin and M. Rosbash, PER protein interactions and temperature compensation of a circadian clock in Drosophila, Science, 267 (1995), 1169-1172.
11 M. W. Karakashian and J. W. Hastings, The effects of inhibitors of macromolecular biosynthesis upon the persistent rhythm of luminescence in Gonyaulax, J. Gen. Physiol., 47 (1963), 1-12.
12 S. B. S. Khalsa, D. Whitmore and G. D. Block, Stopping the circadian pacemaker with inhibitors of protein synthesis, Proc. Natl. Acad. Sci. USA, 89 (1992), 10862-10866.
13 B. Kloss, J. L. Price, L. Saez, J. Blau, A. Rothenfluh, C. S. Wesley and M. W. Young, The Drosophila clock gene double-time encodes a protein closely related to human casein kinase l$\epsilon$, Cell, 94 (1998), 97-107.
14 R. J. Konopka and S. Benzer, Clock mutants of Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 68 (1971), 2112-2116.
15 J.-C. Leloup and A. Goldbeter, A model for circadian rhythms in Drosophila incorporating the formation of a complex between PER and TIM proteins, J. Biol. Rhythms, 13 (1998), 70-87.
16 J. L. Price, J. Blau, A. Rothenfluh, M. Abodeely, B. Kloss and M. W. Young, double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation, Cell, 94 (1998), 83-95.
17 P. Ruoff and L. Rensing, The temperature-compensated Goodwin model simulates many circadian clock properties, J. Theor. Biol., 179 (1996), 275-285.
18 J. E. Rutila, V. Suri, M. Le, M. V. So, M. Rosbash and J. C. Hall, CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless, Cell, 93 (1998), 805-814.
19 T. Scheper, D. Klinkenberg, C. Pennartz and J. van Pelt, A mathematical model for the intracellular circadian rhythm generator, J. Neurosci., 19 (1999), 40-47.
20 A. Sehgal, J. L. Price, B. Man and M. W. Young, Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless, Science, 263 (1994), 1603-1606.
21 J. F. Selgrade, Asymptotic behavior of solutions to single loop positive feedback systems, J. Diff. Eqns., 38 (1980), 80-103.       
22 H. L. Smith, Periodic orbits of competitive and cooperative systems, J. Diff. Eqns., 65 (1986), 361-373.       
23 H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soc. Providence, Rhode Island, 1995.       
24 V. Suri, A. Lanjuin and M. Rosbash, TIMELESS-dependent positive and negative autoregulation in the Drosophila circadian clock, EMBO J., 18 (1999), 501-791.
25 W. R. Taylor, J. C. Dunlap and J. W. Hastings, Inhibitors of protein synthesis on 80s ribosomes phase shift the Gonyaulax clock, J. Exp. Biol., 97 (1982), 121-136.
26 J. J. Tyson, C. I. Hong, C. D. Thron and B. Novak, A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM, Biophys. J., 77 (1999), 2411-2417.
27 L. B. Vosshall, J. L. Price, A. Sehgal, L. Saez and M. W. Young, Block in nuclear localization of period protein by a second clock mutation, timeless, Science, 263 (1994), 1606-1609.
28 Y. Wang and J. Jiang, The general properties of discrete-time competitive dynamical systems, J. Diff. Eqns., 176 (2001), 470-493.       
29 H. Zeng, Z. Qian, M. P. Myers and M. Rosbash, A light-entrainment mechanism for the Drosophila circadian clock, Nature, 380 (1996), 129-135.
30 H.-R. Zhu and H. L. Smith, Stable periodic orbits for a class of three dimensional competitive systems, J. Diff. Eqns., 110 (1994), 143-156.       

Go to top