`a`
Mathematical Biosciences and Engineering (MBE)
 

An SIR epidemic model with vaccination in a patchy environment
Pages: 1141 - 1157, Issue 5/6, October/December 2017

doi:10.3934/mbe.2017059      Abstract        References        Full text (668.0K)           Related Articles

Qianqian Cui - School of Science, Nanjing University of Science and Technology, Nanjing 210094, China (email)
Zhipeng Qiu - School of Science, Nanjing University of Science and Technology, Nanjing 210094, China (email)
Ling Ding - School of Science, Nanjing University of Science and Technology, Nanjing 210094, China (email)

1 M. E. Alexander, C. S. Bowman, S. M. Moghadas, R. Summers, A. B. Gumel and B. M. Sahai, A vaccination model for transmission dynamics of influenza, SIAM J. Appl. Dyn. Syst., 3 (2004), 503-524.       
2 J. Arino, C. C. Mccluskey and P. van den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. Math., 64 (2003), 260-276.       
3 J. Arino, R. Jordan and P. van den Driessche, Quarantine in a multi-species epidemics model with spatial dynamics, Math. Biosci., 206 (2007), 46-60.       
4 P. Auger, E. Kouokam, G. Sallet, M. Tchuente and B. Tsanou, The Ross-Macdonald model in a patchy environment, Math. Biosci., 216 (2008), 123-131.       
5 A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Philadelphia, 1994.       
6 World Health Organization, Ebola response roadmap - Situation report update 3 December 2014, website: URL http://apps.who.int/iris/bitstream/10665/144806/1/roadmapsitrep_3Dec2014_eng.pdf.
7 F. Brauer, P. van den Driessche and L. Wang, Oscillations in a patchy environment disease model, Math. Biosci., 215 (2008), 1-10.       
8 C. Castillo-Chavez and H. Thieme, Asymptotically autonomous epidemic models, in O. Arino, D. Axelrod, M. Kimmel, M. Langlais (Eds.), Mathematical Population Dynamics: Analysis of Heterogeneity, Springer, Berlin, 1995, 33-35.
9 O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010), 873-885.
10 P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.       
11 M. C. Eisenberg, Z. Shuai, J. H. Tien and P. van den Driessche, A cholera model in a patchy environment with water and human movement, Math. Biosci., 246 (2013), 105-112.       
12 How Many Ebola Patients Have Been Treated Outside of Africa? website: http://ritholtz.com/2014/10/how-many-ebola-patients-have-been-treated-outside-africa/.
13 D. Gao and S. Ruan, A multipathc malaria model with Logistic growth populations, SIAM J. Appl. Math., 72 (2012), 819-841.       
14 D. Gao and S. Ruan, Malaria Models with Spatial Effects, Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases, Wiley, 2015.
15 D. Gao and S. Ruan, An SIS patch model with variable transmission coefficients, Math. Biosci., 232 (2011), 110-115.       
16 H. Guo, M. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., 14 (2006), 259-284.       
17 Vaccination, website: https://en.wikipedia.org/wiki/Vaccination.
18 Immunisation Advisory Centre, A Brief History of Vaccination, website: http://www.immune.org.nz/brief-history-vaccination.
19 K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman and P. Daszak, Global trends in emerging infectious diseases, Nature, 451 (2008), 990-993.
20 J. P. LaSalle, The Stability of Dynamical systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976.       
21 S. Ruan, W. Wang and S. A. Levin, The effect of global travel on the spread of SARS, Math. Biosci. Eng., 3 (2006), 205-218.       
22 H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University, 1995.       
23 C. Sun, W. Yang, J. Arino and K. Khan, Effect of media-induced social distancing on disease transmission in a two patch setting, Math. Biosci., 230 (2011), 87-95.       
24 W. Wang and X. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97-112.       
25 W. Wang and X. Zhao, An epidemic model with population dispersal and infection period, SIAM J. Appl. Math., 66 (2006), 1454-1472.       

Go to top