Global stability of the steady states of an epidemic model incorporating intervention strategies
Pages: 1071  1089,
Issue 5/6,
October/December
2017
doi:10.3934/mbe.2017056 Abstract
References
Full text (451.8K)
Related Articles
Yongli Cai  School of Mathematical Science, Huaiyin Normal University, Huaian 223300, China (email)
Yun Kang  Science and Mathematics Faculty, School of Letters and Sciences, Arizona State University, Mesa, AZ 85212, United States (email)
Weiming Wang  School of Mathematical Science, Huaiyin Normal University, Huaian 223300, China (email)
1 
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic patch model, SIAM Journal on Applied Mathematics, 67 (2007), 12831309. 

2 
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reactiondiffusion model, Discrete and Continuous Dynamical SystemsA, 21 (2008), 120. 

3 
P. M. Arguin, A. W. Navin, S. F. Steele, L. H. Weld and P. E. Kozarsky, Health communication during SARS, Emerging Infectious Diseases, 10 (2004), 377380. 

4 
M. P. Brinn, K. V. Carson, A. J. Esterman, A. B. Chang and B. J. Smith, Cochrane review: Mass media interventions for preventing smoking in young people, EvidenceBased Child Health: A Cochrane Review Journal, 7 (2012), 86144. 

5 
Y. Cai, Y. Kang, M. Banerjee and W. Wang, A stochastic SIRS epidemic model with infectious force under intervention strategies, Journal of Differential Equations, 259 (2015), 74637502. 

6 
Y. Cai and W. M. Wang, Dynamics of a parasitehost epidemiological model in spatial heterogeneous environment, Discrete and Continuous Dynamical SystemsSeries B, 20 (2015), 9891013. 

7 
Y. Cai and W. M. Wang, Fishhook bifurcation branch in a spatial heterogeneous epidemic model with crossdiffusion, Nonlinear Analysis: Real World Applications, 30 (2016), 99125. 

8 
Y. Cai, Z. Wang and W. M. Wang, Endemic dynamics in a hostparasite epidemiological model within spatially heterogeneous environment, Applied Mathematics Letters, 61 (2016), 129136. 

9 
R. S. Cantrell and C. Cosner, Spatial Ecology Via ReactionDiffusion Equations, John Wiley & Sons, Ltd., 2003. 

10 
J. Cui, X. Tao and H. Zhu, An SIS infection model incorporating media coverage, Journal of Mathematics, 38 (2008), 13231334. 

11 
J. Cui, Y. Sun and H. Zhu, The impact of media on the control of infectious diseases, Journal of Dynamics and Differential Equations, 20 (2008), 3153. 

12 
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, 28 (1990), 365382. 

13 
W. E. Fitzgibbon, M. Langlais and J. J. Morgan, A mathematical model of the spread of feline leukemia virus (FeLV) through a highly heterogeneous spatial domain, SIAM Journal on Mathematical Analysis, 33 (2001), 570588. 

14 
W. E. Fitzgibbon, M. Langlais and J. J. Morgan, A reactiondiffusion system modeling direct and indirect transmission of diseases, Discrete and Continuous Dynamical SystemsB, 4 (2004), 893910. 

15 
J. Ge, K. I. Kim, Z. Lin and H. Zhu, A SIS reactiondiffusionadvection model in a lowrisk and highrisk domain, Journal of Differential Equations, 259 (2015), 54865509. 

16 
A. B. Gumel, S. Ruan, T. Day, J. Watmough and F. Brauer, Modelling strategies for controlling SARS outbreaks, Proceedings of the Royal Society of London B: Biological Sciences, 271 (2004), 22232232. 

17 
D. Henry and D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, volume 840. SpringerVerlag, Berlin, 1981. 

18 
W. Huang, M. Han and K. Liu, Dynamics of an SIS reactiondiffusion epidemic model for disease transmission, Mathematical Biosciences and Engineering, 7 (2010), 5166. 

19 
P. A. Khanam, B. Khuda, T. T. Khane and A. Ashraf, Awareness of sexually transmitted disease among women and service providers in rural bangladesh, International Journal of STD & AIDS, 8 (1997), 688696. 

20 
T. Kuniya and J. Wang, Lyapunov functions and global stability for a spatially diffusive SIR epidemic model, Applicable Analysis, 2016, 126. 

21 
A. K. Misra, A. Sharma and J. B. Shukla, Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases, Mathematical and Computer Modelling, 53 (2011), 12211228. 

22 
C. Neuhauser, Mathematical challenges in spatial ecology, Notices of the AMS, 48 (2001), 13041314. 

23 
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 198. Springer New York, 1983. 

24 
R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reactiondiffusion model. Part I, Journal of Differential Equations, 247 (2009), 10961119. 

25 
R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reactiondiffusion model, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 239247. 

26 
R. Peng and X. Zhao, A reactiondiffusion SIS epidemic model in a timeperiodic environment, Nonlinearity, 25 (2012), 14511471. 

27 
R. Peng and F. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reactiondiffusion model: Effects of epidemic risk and population movement, Physica D: Nonlinear Phenomena, 259 (2013), 825. 

28 
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, PrenticeHall, New Jersey, 1967. 

29 
M. Robinson, N. I. Stilianakis and Y. Drossinos, Spatial dynamics of airborne infectious diseases, Journal of Theoretical Biology, 297 (2012), 116126. 

30 
J. Shi, Z. Xie and K. Little, Crossdiffusion induced instability and stability in reactiondiffusion systems, Journal of Applied Analysis and Computation, 1 (2011), 95119. 

31 
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995. 

32 
C. Sun, W. Yang, J. Arino and K. Khan, Effect of mediainduced social distancing on disease transmission in a two patch setting, Mathematical Biosciences, 230 (2011), 8795. 

33 
S. Tang, Y. Xiao, L. Yuan, R. A. Cheke and J. Wu, Campus quarantine (FengXiao) for curbing emergent infectious diseases: lessons from mitigating a/H1N1 in Xi'an, China, Journal of Theoretical Biology, 295 (2012), 4758. 

34 
J. M. Tchuenche and C. T. Bauch, Dynamics of an infectious disease where media coverage influences transmission, ISRN Biomathematics, 2012 (2012), Article ID 581274, 10 pages. 

35 
J. M. Tchuenche, N. Dube, C. P. Bhunu and C. Bauch, The impact of media coverage on the transmission dynamics of human influenza, BMC Public Health, 11 (2011), S5. 

36 
N. Tuncer and M. Martcheva, Analytical and numerical approaches to coexistence of strains in a twostrain SIS model with diffusion, Journal of Biological Dynamics, 6 (2012), 406439. 

37 
P. Van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 2948. 

38 
J. Wang, R. Zhang and T. Kuniya, The dynamics of an SVIR epidemiological model with infection age, IMA Journal of Applied Mathematics, 81 (2016), 321343. 

39 
W. D. Wang, Epidemic models with nonlinear infection forces, Mathematical Biosciences and Engineering, 3 (2006), 267279. 

40 
W. D. Wang and X. Zhao, Basic reproduction numbers for reactiondiffusion epidemic models, SIAM Journal on Applied Dynamical Systems, 11 (2012), 16521673. 

41 
D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Mathematical Biosciences, 208 (2007), 419429. 

42 
Y. Xiao, S. Tang and J. Wu, Media impact switching surface during an infectious disease outbreak, Scientific Reports, 5 (2015), 7838. 

43 
Y. Xiao, T. Zhao and S. Tang, Dynamics of an infectious diseases with media/psychology induced nonsmooth incidence, Mathematical Biosciences and Engineering, 10 (2013), 445461. 

44 
M. E. Young, G. R. Norman and K. R. Humphreys, Medicine in the popular press: The influence of the media on perceptions of disease, PLoS One, 3 (2008), e3552. 

Go to top
