• Previous Article
    Dynamics of a two-receptor binding model: How affinities and capacities translate into long and short time behaviour and physiological corollaries
  • DCDS-B Home
  • This Issue
  • Next Article
    A discrete dynamical system arising in molecular biology
September  2012, 17(6): 2153-2170. doi: 10.3934/dcdsb.2012.17.2153

Global injectivity and multiple equilibria in uni- and bi-molecular reaction networks

1. 

Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, United Kingdom

2. 

Automatic Control Laboratory, Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, ETL I26 8092, Switzerland

3. 

Department of Mathematics and Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States

Received  June 2011 Revised  September 2011 Published  May 2012

Dynamical system models of complex biochemical reaction networks are high-dimensional, nonlinear, and contain many unknown parameters. The capacity for multiple equilibria in such systems plays a key role in important biochemical processes. Examples show that there is a very delicate relationship between the structure of a reaction network and its capacity to give rise to several positive equilibria. In this paper we focus on networks of reactions governed by mass-action kinetics. As is almost always the case in practice, we assume that no reaction involves the collision of three or more molecules at the same place and time, which implies that the associated mass-action differential equations contain only linear and quadratic terms. We describe a general injectivity criterion for quadratic functions of several variables, and relate this criterion to a network's capacity for multiple equilibria. In order to take advantage of this criterion we look for explicit general conditions that imply non-vanishing of polynomial functions on the positive orthant. In particular, we investigate in detail the case of polynomials with only one negative monomial, and we fully characterize the case of affinely independent exponents. We describe several examples, including an example that shows how these methods may be used for designing multistable chemical systems in synthetic biology.
Citation: Casian Pantea, Heinz Koeppl, Gheorghe Craciun. Global injectivity and multiple equilibria in uni- and bi-molecular reaction networks. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2153-2170. doi: 10.3934/dcdsb.2012.17.2153
References:
[1]

D. F. Anderson, A proof of the global attractor conjecture in the single linkage class case,, SIAM J. Appl. Math., 71 (2011), 1487. doi: 10.1137/11082631X. Google Scholar

[2]

D. F. Anderson and A. Shiu, The dynamics of weakly reversible population processes near facets,, SIAM J. Appl. Math., 70 (2010), 1840. doi: 10.1137/090764098. Google Scholar

[3]

M. Banaji, P. Donnell and S. Baigent, $P$ matrix properties, injectivity, and stability in chemical reaction systems,, SIAM J. Appl. Math., 67 (2007), 1523. doi: 10.1137/060673412. Google Scholar

[4]

M. Banaji and G. Craciun, Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems,, Adv. Appl. Math., 44 (2010), 168. doi: 10.1016/j.aam.2009.07.003. Google Scholar

[5]

M. Banaji and G. Craciun, Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements,, Comm. Math. Sci., 7 (2009), 867. Google Scholar

[6]

G. Blekherman, Nonnegative polynomials and sums of squares,, preprint, (). Google Scholar

[7]

S. Boyd and L. Vandenberghe, "Convex Optimization,", Cambridge University Press, (2004). Google Scholar

[8]

G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks. I. The injectivity property,, SIAM J. Appl. Math., 65 (2005), 1526. doi: 10.1137/S0036139904440278. Google Scholar

[9]

G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks. II. The species-reactions graph,, SIAM J. Appl. Math., 66 (2006), 1321. doi: 10.1137/050634177. Google Scholar

[10]

G. Craciun, Y. Tang and M. Feinberg, Understanding bistability in complex enzyme-driven reaction networks,, PNAS, 103 (2006), 8697. doi: 10.1073/pnas.0602767103. Google Scholar

[11]

G. Craciun, L. D. Garcia-Puente and F. Sottile, Some geometrical aspects of control points for toric patches,, Mathematical Methods for Curves and Surfaces, 5862 (2010), 111. Google Scholar

[12]

G. Craciun, J. W. Helton and R. J. Williams, Homotopy methods for counting reaction network equilibria,, Math. Biosci., 216 (2008), 140. doi: 10.1016/j.mbs.2008.09.001. Google Scholar

[13]

G. Craciun, F. Nazarov and C. Pantea, Persistence and permanence of mass-action and power-law dynamical systems,, preprint, (). Google Scholar

[14]

G. Craciun, C. Pantea and E. D. Sontag, Graph-theoretic analysis of multistability and monotonicity for biochemical reaction networks,, in, (2011). Google Scholar

[15]

G. Craciun, A. Dickenstein, A. Shiu and B. Sturmfels, Toric dynamical systems,, J. Symb. Comput., 44 (2009), 1551. doi: 10.1016/j.jsc.2008.08.006. Google Scholar

[16]

J. Davenport and J. Heintz, Real quantifier elimination is doubly exponential,, J. Symb. Comput., 5 (1988), 29. Google Scholar

[17]

P. De Leenheer and H. Smith, Feedback control for chemostat models,, J. Math. Biol., 46 (2003), 48. doi: 10.1007/s00285-002-0170-x. Google Scholar

[18]

R. J. Duffin and E. L. Peterson, Duality theory for geometric programming,, SIAM J. Appl. Math., 14 (1966), 1307. doi: 10.1137/0114105. Google Scholar

[19]

R. J. Duffin, E. L. Peterson and C. Zener, "Geometric Programming: Theory and Application,", John Wiley & Sons, (1967). Google Scholar

[20]

J. G. Ecker, Geometric programming: Methods, computations and applications,, SIAM Review, 22 (1980), 338. doi: 10.1137/1022058. Google Scholar

[21]

M. Feinberg, Lectures on chemical reaction networks,, written version of lectures given at the Mathematical Research Center, (1979). Google Scholar

[22]

M. Hafner, H. Koeppl, M. Hasler and A. Wagner, 'Glocal' robustness analysis and model discrimination for circadian oscillators,, PLoS Computational Biology, 5 (2009). Google Scholar

[23]

J. W. Helton, V. Katsnelson and I. Klep, Sign patterns for chemical reaction networks,, Journal of Mathematical Chemistry, 47 (2010), 403. doi: 10.1007/s10910-009-9579-4. Google Scholar

[24]

J. W. Helton, I. Klep and R. Gomez, Determinant expansions of signed matrices and of certain jacobians,, SIAM J. of Mat. Anal. Appl., 31 (2009), 732. doi: 10.1137/080718838. Google Scholar

[25]

R. A. Horn and C. R. Johnson, "Topics in Matrix Analysis,", Cambridge University Press, (1991). Google Scholar

[26]

H. Koeppl, S. Andreozzi and R. Steuer, Guaranteed and randomized methods for stability analysis of uncertain metabolic networks, in "Advances in the Theory of Control, Signals and Systems with Physical Modeling,", Lecture Notes in Control and Information Sciences, 407 (2010), 297. Google Scholar

[27]

R. McDaniel and R. Weiss, Advances in synthetic biology: On the path from prototypes to applications,, Curr. Opin. in Biotech., 16 (2005), 476. doi: 10.1016/j.copbio.2005.07.002. Google Scholar

[28]

C. Pantea, BioNetX, a software package for examining dynamical properties of biochemical reaction network models., Available from: \url{http://cap.ee.ic.ac.uk/~cpantea/}., (). Google Scholar

[29]

C. Pantea, On the persistence and global stability of mass-action systems,, preprint, (). Google Scholar

[30]

C. Pantea and G. Craciun, Computational methods for analyzing bistability in biochemical reaction networks,, Proceedings of the IEEE International Symposium on Circuits and Systems, (2010). Google Scholar

[31]

S. Pinchuk, A counterexample to the strong real Jacobian conjecture,, Math. Z., 217 (1994), 1. doi: 10.1007/BF02571929. Google Scholar

[32]

G. Pòlya and G. Szegő, "Problems and Theorems in Analysis. I. Series, Integral Calculus, Theory of Functions,", Corrected printing of the revised translation of the fourth German edition, 193 (1978). Google Scholar

[33]

P. E. M. Purnick and R. Weiss, The second wave of synthetic biology: From modules to systems,, Nature Reviews Molecular Cell Biology, 10 (2009), 410. doi: 10.1038/nrm2698. Google Scholar

[34]

J. B. Rawlings and J. G. Ekerdt, "Chemical Reactor Analysis and Design Fundamentals,", Nob Hill Publishing, (2004). Google Scholar

[35]

R. Swan, Tarski's Principle and the elimination of quantifiers., Available from: \url{http://www.math.uchicago.edu/~swan/expo/Tarski.pdf}., (). Google Scholar

[36]

A. Tarski, "A Decision Method for Elementary Algebra and Geometry,", RAND Corporation, (1948). Google Scholar

[37]

V. Weispfenning, The complexity of linear problems in fields,, J. Symb. Comput., 5 (1988), 3. Google Scholar

[38]

C. Zener, A mathematical aid in optimizing engineering designs,, PNAS USA, 47 (1961), 537. doi: 10.1073/pnas.47.4.537. Google Scholar

show all references

References:
[1]

D. F. Anderson, A proof of the global attractor conjecture in the single linkage class case,, SIAM J. Appl. Math., 71 (2011), 1487. doi: 10.1137/11082631X. Google Scholar

[2]

D. F. Anderson and A. Shiu, The dynamics of weakly reversible population processes near facets,, SIAM J. Appl. Math., 70 (2010), 1840. doi: 10.1137/090764098. Google Scholar

[3]

M. Banaji, P. Donnell and S. Baigent, $P$ matrix properties, injectivity, and stability in chemical reaction systems,, SIAM J. Appl. Math., 67 (2007), 1523. doi: 10.1137/060673412. Google Scholar

[4]

M. Banaji and G. Craciun, Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems,, Adv. Appl. Math., 44 (2010), 168. doi: 10.1016/j.aam.2009.07.003. Google Scholar

[5]

M. Banaji and G. Craciun, Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements,, Comm. Math. Sci., 7 (2009), 867. Google Scholar

[6]

G. Blekherman, Nonnegative polynomials and sums of squares,, preprint, (). Google Scholar

[7]

S. Boyd and L. Vandenberghe, "Convex Optimization,", Cambridge University Press, (2004). Google Scholar

[8]

G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks. I. The injectivity property,, SIAM J. Appl. Math., 65 (2005), 1526. doi: 10.1137/S0036139904440278. Google Scholar

[9]

G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks. II. The species-reactions graph,, SIAM J. Appl. Math., 66 (2006), 1321. doi: 10.1137/050634177. Google Scholar

[10]

G. Craciun, Y. Tang and M. Feinberg, Understanding bistability in complex enzyme-driven reaction networks,, PNAS, 103 (2006), 8697. doi: 10.1073/pnas.0602767103. Google Scholar

[11]

G. Craciun, L. D. Garcia-Puente and F. Sottile, Some geometrical aspects of control points for toric patches,, Mathematical Methods for Curves and Surfaces, 5862 (2010), 111. Google Scholar

[12]

G. Craciun, J. W. Helton and R. J. Williams, Homotopy methods for counting reaction network equilibria,, Math. Biosci., 216 (2008), 140. doi: 10.1016/j.mbs.2008.09.001. Google Scholar

[13]

G. Craciun, F. Nazarov and C. Pantea, Persistence and permanence of mass-action and power-law dynamical systems,, preprint, (). Google Scholar

[14]

G. Craciun, C. Pantea and E. D. Sontag, Graph-theoretic analysis of multistability and monotonicity for biochemical reaction networks,, in, (2011). Google Scholar

[15]

G. Craciun, A. Dickenstein, A. Shiu and B. Sturmfels, Toric dynamical systems,, J. Symb. Comput., 44 (2009), 1551. doi: 10.1016/j.jsc.2008.08.006. Google Scholar

[16]

J. Davenport and J. Heintz, Real quantifier elimination is doubly exponential,, J. Symb. Comput., 5 (1988), 29. Google Scholar

[17]

P. De Leenheer and H. Smith, Feedback control for chemostat models,, J. Math. Biol., 46 (2003), 48. doi: 10.1007/s00285-002-0170-x. Google Scholar

[18]

R. J. Duffin and E. L. Peterson, Duality theory for geometric programming,, SIAM J. Appl. Math., 14 (1966), 1307. doi: 10.1137/0114105. Google Scholar

[19]

R. J. Duffin, E. L. Peterson and C. Zener, "Geometric Programming: Theory and Application,", John Wiley & Sons, (1967). Google Scholar

[20]

J. G. Ecker, Geometric programming: Methods, computations and applications,, SIAM Review, 22 (1980), 338. doi: 10.1137/1022058. Google Scholar

[21]

M. Feinberg, Lectures on chemical reaction networks,, written version of lectures given at the Mathematical Research Center, (1979). Google Scholar

[22]

M. Hafner, H. Koeppl, M. Hasler and A. Wagner, 'Glocal' robustness analysis and model discrimination for circadian oscillators,, PLoS Computational Biology, 5 (2009). Google Scholar

[23]

J. W. Helton, V. Katsnelson and I. Klep, Sign patterns for chemical reaction networks,, Journal of Mathematical Chemistry, 47 (2010), 403. doi: 10.1007/s10910-009-9579-4. Google Scholar

[24]

J. W. Helton, I. Klep and R. Gomez, Determinant expansions of signed matrices and of certain jacobians,, SIAM J. of Mat. Anal. Appl., 31 (2009), 732. doi: 10.1137/080718838. Google Scholar

[25]

R. A. Horn and C. R. Johnson, "Topics in Matrix Analysis,", Cambridge University Press, (1991). Google Scholar

[26]

H. Koeppl, S. Andreozzi and R. Steuer, Guaranteed and randomized methods for stability analysis of uncertain metabolic networks, in "Advances in the Theory of Control, Signals and Systems with Physical Modeling,", Lecture Notes in Control and Information Sciences, 407 (2010), 297. Google Scholar

[27]

R. McDaniel and R. Weiss, Advances in synthetic biology: On the path from prototypes to applications,, Curr. Opin. in Biotech., 16 (2005), 476. doi: 10.1016/j.copbio.2005.07.002. Google Scholar

[28]

C. Pantea, BioNetX, a software package for examining dynamical properties of biochemical reaction network models., Available from: \url{http://cap.ee.ic.ac.uk/~cpantea/}., (). Google Scholar

[29]

C. Pantea, On the persistence and global stability of mass-action systems,, preprint, (). Google Scholar

[30]

C. Pantea and G. Craciun, Computational methods for analyzing bistability in biochemical reaction networks,, Proceedings of the IEEE International Symposium on Circuits and Systems, (2010). Google Scholar

[31]

S. Pinchuk, A counterexample to the strong real Jacobian conjecture,, Math. Z., 217 (1994), 1. doi: 10.1007/BF02571929. Google Scholar

[32]

G. Pòlya and G. Szegő, "Problems and Theorems in Analysis. I. Series, Integral Calculus, Theory of Functions,", Corrected printing of the revised translation of the fourth German edition, 193 (1978). Google Scholar

[33]

P. E. M. Purnick and R. Weiss, The second wave of synthetic biology: From modules to systems,, Nature Reviews Molecular Cell Biology, 10 (2009), 410. doi: 10.1038/nrm2698. Google Scholar

[34]

J. B. Rawlings and J. G. Ekerdt, "Chemical Reactor Analysis and Design Fundamentals,", Nob Hill Publishing, (2004). Google Scholar

[35]

R. Swan, Tarski's Principle and the elimination of quantifiers., Available from: \url{http://www.math.uchicago.edu/~swan/expo/Tarski.pdf}., (). Google Scholar

[36]

A. Tarski, "A Decision Method for Elementary Algebra and Geometry,", RAND Corporation, (1948). Google Scholar

[37]

V. Weispfenning, The complexity of linear problems in fields,, J. Symb. Comput., 5 (1988), 3. Google Scholar

[38]

C. Zener, A mathematical aid in optimizing engineering designs,, PNAS USA, 47 (1961), 537. doi: 10.1073/pnas.47.4.537. Google Scholar

[1]

Murat Arcak, Eduardo D. Sontag. A passivity-based stability criterion for a class of biochemical reaction networks. Mathematical Biosciences & Engineering, 2008, 5 (1) : 1-19. doi: 10.3934/mbe.2008.5.1

[2]

Ronen Peretz, Nguyen Van Chau, L. Andrew Campbell, Carlos Gutierrez. Iterated images and the plane Jacobian conjecture. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 455-461. doi: 10.3934/dcds.2006.16.455

[3]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[4]

Francisco Braun, José Ruidival dos Santos Filho. The real jacobian conjecture on $\R^2$ is true when one of the components has degree 3. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 75-87. doi: 10.3934/dcds.2010.26.75

[5]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077

[6]

Anne Shiu, Timo de Wolff. Nondegenerate multistationarity in small reaction networks. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2683-2700. doi: 10.3934/dcdsb.2018270

[7]

Yuki Kumagai. Social networks and global transactions. Journal of Dynamics & Games, 2019, 6 (3) : 211-219. doi: 10.3934/jdg.2019015

[8]

Maria Conceição A. Leite, Yunjiao Wang. Multistability, oscillations and bifurcations in feedback loops. Mathematical Biosciences & Engineering, 2010, 7 (1) : 83-97. doi: 10.3934/mbe.2010.7.83

[9]

Jason Metcalfe, David Spencer. Global existence for a coupled wave system related to the Strauss conjecture. Communications on Pure & Applied Analysis, 2018, 17 (2) : 593-604. doi: 10.3934/cpaa.2018032

[10]

Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks & Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295

[11]

François Lalonde, Yasha Savelyev. On the injectivity radius in Hofer's geometry. Electronic Research Announcements, 2014, 21: 177-185. doi: 10.3934/era.2014.21.177

[12]

Panayotis Panayotaros, Felipe Rivero. Multistability and localized attractors in a dissipative discrete NLS equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1137-1154. doi: 10.3934/dcdsb.2014.19.1137

[13]

Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505

[14]

Andrey Yu. Verisokin, Darya V. Verveyko, Eugene B. Postnikov, Anastasia I. Lavrova. Wavelet analysis of phase clusters in a distributed biochemical system. Conference Publications, 2011, 2011 (Special) : 1404-1412. doi: 10.3934/proc.2011.2011.1404

[15]

Bernard Dacorogna, Olivier Kneuss. Multiple Jacobian equations. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1779-1787. doi: 10.3934/cpaa.2014.13.1779

[16]

Isabelle Déchène. On the security of generalized Jacobian cryptosystems. Advances in Mathematics of Communications, 2007, 1 (4) : 413-426. doi: 10.3934/amc.2007.1.413

[17]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-21. doi: 10.3934/dcdss.2020083

[18]

Klemens Fellner, Wolfang Prager, Bao Q. Tang. The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks. Kinetic & Related Models, 2017, 10 (4) : 1055-1087. doi: 10.3934/krm.2017042

[19]

Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471

[20]

Zsolt Páles, Vera Zeidan. $V$-Jacobian and $V$-co-Jacobian for Lipschitzian maps. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 623-646. doi: 10.3934/dcds.2011.29.623

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]