2015, 20(4): 1059-1076. doi: 10.3934/dcdsb.2015.20.1059

Migration and orientation of endothelial cells on micropatterned polymers: A simple model based on classical mechanics

1. 

INRIA Bordeaux-Sud-Ouest, F-33400,Talence, France, France, France, France

2. 

INSERM, IECB, UMR 5248, F-33600, Pessac, France, France

Received  March 2013 Revised  December 2014 Published  February 2015

Understanding the endothelial cell migration on micropatterned polymers, as well as the cell orientation is a critical issue in tissue engineering, since it is the preliminary step towards cell polarization and that possibly leads to the blood vessel formation. In this paper, we derive a simple agent-based model to describe the migration and the orientation of endothelial cells seeded on bioactive micropatterned polymers. The aim of the modeling is to provide a simple model that corroborates quantitatively the experiments, without considering the complex phenomena inherent to cell migration. Our model is obtained thanks to a classical mechanics approach based on experimental observations. Even though its simplicity, it provides numerical results that are quantitatively in accordance with the experimental data, and thus our approach can be seen as a preliminary way towards a simple modeling of cell migration.
Citation: Julie Joie, Yifeng Lei, Marie-Christine Durrieu, Thierry Colin, Clair Poignard, Olivier Saut. Migration and orientation of endothelial cells on micropatterned polymers: A simple model based on classical mechanics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1059-1076. doi: 10.3934/dcdsb.2015.20.1059
References:
[1]

K. Anselme, P. Davidson, A. Popa, M. Liley and L. Ploux, The interaction of cells and bacteria with surfaces structured at the nanometre scale,, Acta Biomaterialia, 6 (2010), 3824. doi: 10.1016/j.actbio.2010.04.001.

[2]

M. Bagnat and K. Simons, Cell surface polarization during yeast mating,, Proceedings of the National Academy of Sciences, 99 (2002), 14183. doi: 10.1073/pnas.172517799.

[3]

C. Chen, M. Mrksich, S. Huang, G. Whitesides and D. Ingber, Geometric control of cell life and death,, Science, 276 (1997), 1425. doi: 10.1126/science.276.5317.1425.

[4]

T. Colin, M.-C. Durrieu, J. Joie, Y. Lei, Y. Mammeri, C. Poignard and O. Saut, Modeling of the migration of endothelial cells on bioactive micropatterned polymers,, Mathematical biosciences and engineering, 10 (2013), 997. doi: 10.3934/mbe.2013.10.997.

[5]

L. Dike, C. Chen, J. Tien, G. Whitesides and D. Ingber, Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates,, In Vitro Cell. Dev. Biol., 35 (1999), 441. doi: 10.1007/s11626-999-0050-4.

[6]

D. Drasdo, S. Dormann, S. Hoehme and A. Deutsch, Cell-based models of avascular tumor growth,, in Function and Regulation of Cellular Systems, (2004), 367.

[7]

A. Folch and M. Toner, Microengineering of cellular interactions,, Annu. Rev. Biomed. Eng., 2 (2000), 227.

[8]

R. J. Hawkins, O. Bénichou, M. Piel and R. Voituriez, Rebuilding cytoskeleton roads: Active-transport-induced polarization of cells,, Physical Review E, 80 (2009). doi: 10.1103/PhysRevE.80.040903.

[9]

J. Irazoqui, A. Gladfelter and D. Lew, Scaffold-mediated symmetry breaking by cdc42p,, Nat. Cell Biol., 5 (2003), 1062. doi: 10.1038/ncb1068.

[10]

Y. Ito, Surface micropatterning to regulate cell functions,, Biomaterials, 20 (1999), 2333. doi: 10.1016/S0142-9612(99)00162-3.

[11]

R. Jain, P. Au, J. Tam, D. Duda and D. Fukumura, Engineering vascularized tissue,, Nat. Biotechnol., 23 (2005), 821. doi: 10.1038/nbt0705-821.

[12]

M. Kamei, W. Saunders, K. Bayless, L. Dye, G. Davis and B. Weinstein, Endothelial tubes assemble from intracellular vacuoles in vivo,, Nature, 442 (2006), 453. doi: 10.1038/nature04923.

[13]

Y. Lei, Biochemical and Microscale Modification of Polymer for Endothelial Cell Angiogenesis,, PhD thesis, (2012).

[14]

Y. Lei, O. Zouani, L. Rami, C. Chanseau and M.-C. Durrieu, Modulation of lumen formation by microgeometrical bioactive cues and migration mode of actin machinery,, Small, 9 (2013), 1086. doi: 10.1002/smll.201202410.

[15]

Y. Lei, O. Zouani, M. Rémy, C. Ayela and M.-C. Durrieu, Geometrical microfeature cues for directing tubulogenesis of endothelial cells,, PLoS ONE, 7 (2012). doi: 10.1371/journal.pone.0041163.

[16]

B. Lubarsky and M. Krasnow, Tube morphogenesis: Making and shaping biological tubes,, Cell, 112 (2006), 19.

[17]

K. Madden and M. Snyder, Cell polarity and morphogenesis in budding yeast,, Annual Reviews in Microbiology, 52 (1998), 687. doi: 10.1146/annurev.micro.52.1.687.

[18]

S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology,, Journal of Theoretical Biology, 254 (2008), 178. doi: 10.1016/j.jtbi.2008.04.011.

[19]

C. Min and F. Gibou, A second order accurate projection method for the incompressible Navier-Stokes equations on non-graded adaptive grids,, Journal of Computational Physics, 219 (2006), 912. doi: 10.1016/j.jcp.2006.07.019.

[20]

M. Morris, Factorial sampling plans for preliminary computational experiments,, Technometrics, 33 (1991), 161. doi: 10.2307/1269043.

[21]

R. Nerem, Tissue engineering: The hope, the hype, and the future,, Tissue Eng., 12 ().

[22]

D. Nicolau, T. T., H. Taniguchi, H. Tanigawa and S. Yoshikawa, Patterning neuronal and glia cells on light-assisted functionalized photoresists,, Biosens. Bioelectron., 14 (1999), 317.

[23]

E. Phelps and A. Garcia, Engineering more than a cell: Vascularization strategies in tissue engineering,, Curr. Opin. Biotechnol., 21 (2010), 704. doi: 10.1016/j.copbio.2010.06.005.

[24]

T.-H. Tsai, Simulations of endothelial cells clusters migration in angiogenesis,, The SIJ Transactions on Computer Science Engineering & its Applications (CSEA), 1 (2013), 111.

[25]

R. Wedlich-Soldner, S. Altschuler, L. Wu and R. Li, Spontaneous cell polarization through actomyosin-based delivery of the cdc42 gtpase,, Science, 299 (2003), 1231. doi: 10.1126/science.1080944.

[26]

R. Wedlich-Soldner, S. Wai, T. Schmidt and R. Li, Robust cell polarity is a dynamic state established by coupling transport and gtpase signaling,, The Journal of Cell Biology, 166 (2004), 889. doi: 10.1083/jcb.200405061.

show all references

References:
[1]

K. Anselme, P. Davidson, A. Popa, M. Liley and L. Ploux, The interaction of cells and bacteria with surfaces structured at the nanometre scale,, Acta Biomaterialia, 6 (2010), 3824. doi: 10.1016/j.actbio.2010.04.001.

[2]

M. Bagnat and K. Simons, Cell surface polarization during yeast mating,, Proceedings of the National Academy of Sciences, 99 (2002), 14183. doi: 10.1073/pnas.172517799.

[3]

C. Chen, M. Mrksich, S. Huang, G. Whitesides and D. Ingber, Geometric control of cell life and death,, Science, 276 (1997), 1425. doi: 10.1126/science.276.5317.1425.

[4]

T. Colin, M.-C. Durrieu, J. Joie, Y. Lei, Y. Mammeri, C. Poignard and O. Saut, Modeling of the migration of endothelial cells on bioactive micropatterned polymers,, Mathematical biosciences and engineering, 10 (2013), 997. doi: 10.3934/mbe.2013.10.997.

[5]

L. Dike, C. Chen, J. Tien, G. Whitesides and D. Ingber, Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates,, In Vitro Cell. Dev. Biol., 35 (1999), 441. doi: 10.1007/s11626-999-0050-4.

[6]

D. Drasdo, S. Dormann, S. Hoehme and A. Deutsch, Cell-based models of avascular tumor growth,, in Function and Regulation of Cellular Systems, (2004), 367.

[7]

A. Folch and M. Toner, Microengineering of cellular interactions,, Annu. Rev. Biomed. Eng., 2 (2000), 227.

[8]

R. J. Hawkins, O. Bénichou, M. Piel and R. Voituriez, Rebuilding cytoskeleton roads: Active-transport-induced polarization of cells,, Physical Review E, 80 (2009). doi: 10.1103/PhysRevE.80.040903.

[9]

J. Irazoqui, A. Gladfelter and D. Lew, Scaffold-mediated symmetry breaking by cdc42p,, Nat. Cell Biol., 5 (2003), 1062. doi: 10.1038/ncb1068.

[10]

Y. Ito, Surface micropatterning to regulate cell functions,, Biomaterials, 20 (1999), 2333. doi: 10.1016/S0142-9612(99)00162-3.

[11]

R. Jain, P. Au, J. Tam, D. Duda and D. Fukumura, Engineering vascularized tissue,, Nat. Biotechnol., 23 (2005), 821. doi: 10.1038/nbt0705-821.

[12]

M. Kamei, W. Saunders, K. Bayless, L. Dye, G. Davis and B. Weinstein, Endothelial tubes assemble from intracellular vacuoles in vivo,, Nature, 442 (2006), 453. doi: 10.1038/nature04923.

[13]

Y. Lei, Biochemical and Microscale Modification of Polymer for Endothelial Cell Angiogenesis,, PhD thesis, (2012).

[14]

Y. Lei, O. Zouani, L. Rami, C. Chanseau and M.-C. Durrieu, Modulation of lumen formation by microgeometrical bioactive cues and migration mode of actin machinery,, Small, 9 (2013), 1086. doi: 10.1002/smll.201202410.

[15]

Y. Lei, O. Zouani, M. Rémy, C. Ayela and M.-C. Durrieu, Geometrical microfeature cues for directing tubulogenesis of endothelial cells,, PLoS ONE, 7 (2012). doi: 10.1371/journal.pone.0041163.

[16]

B. Lubarsky and M. Krasnow, Tube morphogenesis: Making and shaping biological tubes,, Cell, 112 (2006), 19.

[17]

K. Madden and M. Snyder, Cell polarity and morphogenesis in budding yeast,, Annual Reviews in Microbiology, 52 (1998), 687. doi: 10.1146/annurev.micro.52.1.687.

[18]

S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology,, Journal of Theoretical Biology, 254 (2008), 178. doi: 10.1016/j.jtbi.2008.04.011.

[19]

C. Min and F. Gibou, A second order accurate projection method for the incompressible Navier-Stokes equations on non-graded adaptive grids,, Journal of Computational Physics, 219 (2006), 912. doi: 10.1016/j.jcp.2006.07.019.

[20]

M. Morris, Factorial sampling plans for preliminary computational experiments,, Technometrics, 33 (1991), 161. doi: 10.2307/1269043.

[21]

R. Nerem, Tissue engineering: The hope, the hype, and the future,, Tissue Eng., 12 ().

[22]

D. Nicolau, T. T., H. Taniguchi, H. Tanigawa and S. Yoshikawa, Patterning neuronal and glia cells on light-assisted functionalized photoresists,, Biosens. Bioelectron., 14 (1999), 317.

[23]

E. Phelps and A. Garcia, Engineering more than a cell: Vascularization strategies in tissue engineering,, Curr. Opin. Biotechnol., 21 (2010), 704. doi: 10.1016/j.copbio.2010.06.005.

[24]

T.-H. Tsai, Simulations of endothelial cells clusters migration in angiogenesis,, The SIJ Transactions on Computer Science Engineering & its Applications (CSEA), 1 (2013), 111.

[25]

R. Wedlich-Soldner, S. Altschuler, L. Wu and R. Li, Spontaneous cell polarization through actomyosin-based delivery of the cdc42 gtpase,, Science, 299 (2003), 1231. doi: 10.1126/science.1080944.

[26]

R. Wedlich-Soldner, S. Wai, T. Schmidt and R. Li, Robust cell polarity is a dynamic state established by coupling transport and gtpase signaling,, The Journal of Cell Biology, 166 (2004), 889. doi: 10.1083/jcb.200405061.

[1]

Holly Gaff. Preliminary analysis of an agent-based model for a tick-borne disease. Mathematical Biosciences & Engineering, 2011, 8 (2) : 463-473. doi: 10.3934/mbe.2011.8.463

[2]

Gianluca D'Antonio, Paul Macklin, Luigi Preziosi. An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Mathematical Biosciences & Engineering, 2013, 10 (1) : 75-101. doi: 10.3934/mbe.2013.10.75

[3]

Julien Dambrine, Nicolas Meunier, Bertrand Maury, Aude Roudneff-Chupin. A congestion model for cell migration. Communications on Pure & Applied Analysis, 2012, 11 (1) : 243-260. doi: 10.3934/cpaa.2012.11.243

[4]

Jan Kelkel, Christina Surulescu. On some models for cancer cell migration through tissue networks. Mathematical Biosciences & Engineering, 2011, 8 (2) : 575-589. doi: 10.3934/mbe.2011.8.575

[5]

Yangjin Kim, Soyeon Roh. A hybrid model for cell proliferation and migration in glioblastoma. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 969-1015. doi: 10.3934/dcdsb.2013.18.969

[6]

Dieter Armbruster, Christian Ringhofer, Andrea Thatcher. A kinetic model for an agent based market simulation. Networks & Heterogeneous Media, 2015, 10 (3) : 527-542. doi: 10.3934/nhm.2015.10.527

[7]

Christian Engwer, Markus Knappitsch, Christina Surulescu. A multiscale model for glioma spread including cell-tissue interactions and proliferation. Mathematical Biosciences & Engineering, 2016, 13 (2) : 443-460. doi: 10.3934/mbe.2015011

[8]

Marco Scianna, Luigi Preziosi, Katarina Wolf. A Cellular Potts model simulating cell migration on and in matrix environments. Mathematical Biosciences & Engineering, 2013, 10 (1) : 235-261. doi: 10.3934/mbe.2013.10.235

[9]

Tracy L. Stepien, Hal L. Smith. Existence and uniqueness of similarity solutions of a generalized heat equation arising in a model of cell migration. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3203-3216. doi: 10.3934/dcds.2015.35.3203

[10]

Yangjin Kim, Hans G. Othmer. Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1141-1156. doi: 10.3934/mbe.2015.12.1141

[11]

Yuchi Qiu, Weitao Chen, Qing Nie. Stochastic dynamics of cell lineage in tissue homeostasis. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-24. doi: 10.3934/dcdsb.2018339

[12]

Thierry Colin, Marie-Christine Durrieu, Julie Joie, Yifeng Lei, Youcef Mammeri, Clair Poignard, Olivier Saut. Modeling of the migration of endothelial cells on bioactive micropatterned polymers. Mathematical Biosciences & Engineering, 2013, 10 (4) : 997-1015. doi: 10.3934/mbe.2013.10.997

[13]

Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 19-38. doi: 10.3934/dcdsb.2007.8.19

[14]

H. Thomas Banks, W. Clayton Thompson, Cristina Peligero, Sandra Giest, Jordi Argilaguet, Andreas Meyerhans. A division-dependent compartmental model for computing cell numbers in CFSE-based lymphocyte proliferation assays. Mathematical Biosciences & Engineering, 2012, 9 (4) : 699-736. doi: 10.3934/mbe.2012.9.699

[15]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

[16]

Junyoung Jang, Kihoon Jang, Hee-Dae Kwon, Jeehyun Lee. Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences & Engineering, 2018, 15 (3) : 667-691. doi: 10.3934/mbe.2018030

[17]

Mostafa Adimy, Abdennasser Chekroun, Tarik-Mohamed Touaoula. Age-structured and delay differential-difference model of hematopoietic stem cell dynamics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2765-2791. doi: 10.3934/dcdsb.2015.20.2765

[18]

Frédéric Gibou, Doron Levy, Carlos Cárdenas, Pingyu Liu, Arthur Boyer. Partial Differential Equations-Based Segmentation for Radiotherapy Treatment Planning. Mathematical Biosciences & Engineering, 2005, 2 (2) : 209-226. doi: 10.3934/mbe.2005.2.209

[19]

Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems & Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002

[20]

Lisette dePillis, Trevor Caldwell, Elizabeth Sarapata, Heather Williams. Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 915-943. doi: 10.3934/dcdsb.2013.18.915

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

[Back to Top]