ISSN:

1930-8337

eISSN:

1930-8345

All Issues

## Inverse Problems & Imaging

April 2019 , Volume 13 , Issue 2

Select all articles

Export/Reference:

*+*[Abstract](752)

*+*[HTML](216)

*+*[PDF](1333.16KB)

**Abstract:**

An analysis of the stability of the spindle transform, introduced in [

*+*[Abstract](599)

*+*[HTML](251)

*+*[PDF](497.96KB)

**Abstract:**

An inverse obstacle scattering problem for the electromagnetic wave governed by the Maxwell system over a finite time interval is considered. It is assumed that the wave satisfies the Leontovich boundary condition on the surface of an unknown obstacle. The condition is described by using an unknown positive function on the surface of the obstacle which is called the surface admittance. The wave is generated at the initial time by a volumetric current source supported on a very small ball placed outside the obstacle and only the electric component of the wave is observed on the same ball over a finite time interval. It is shown that from the observed data one can extract information about the value of the surface admittance and the curvatures at the points on the surface nearest to the center of the ball. This shows that a single shot contains a meaningful information about the quantitative state of the surface of the obstacle.

*+*[Abstract](781)

*+*[HTML](314)

*+*[PDF](1075.82KB)

**Abstract:**

EIT is a non-linear ill-posed inverse problem which requires sophisticated regularisation techniques to achieve good results. In this paper we consider the use of structural information in the form of edge directions coming from an auxiliary image of the same object being reconstructed. In order to allow for cases where the auxiliary image does not provide complete information we consider in addition a sparsity regularization for the edges appearing in the EIT image. The combination of these approaches is conveniently described through the parallel level sets approach. We present an overview of previous methods for structural regularisation and then provide a variational setting for our approach and explain the numerical implementation. We present results on simulations and experimental data for different cases with accurate and inaccurate prior information. The results demonstrate that the structural prior information improves the reconstruction accuracy, even in cases when there is reasonable uncertainty in the prior about the location of the edges or only partial edge information is available.

*+*[Abstract](676)

*+*[HTML](244)

*+*[PDF](1470.91KB)

**Abstract:**

In this work we propose a variational model for multi-modal image registration. It minimizes a new functional based on using reformulated normalized gradients of the images as the fidelity term and higher-order derivatives as the regularizer. We first present a theoretical analysis of the proposed model. Then, to solve the model numerically, we use an augmented Lagrangian method (ALM) to reformulate it to a few more amenable subproblems (each giving rise to an Euler-Lagrange equation that is discretized by finite difference methods) and solve iteratively the main linear systems by the fast Fourier transform; a multilevel technique is employed to speed up the initialisation and avoid likely local minima of the underlying functional. Finally we show the convergence of the ALM solver and give numerical results of the new approach. Comparisons with some existing methods are presented to illustrate its effectiveness and advantages.

*+*[Abstract](421)

*+*[HTML](164)

*+*[PDF](345.98KB)

**Abstract:**

We consider a boundary value problem of the stationary transport equation with the incoming boundary condition in two or three dimensional bounded convex domains. We discuss discontinuity of the solution to the boundary value problem arising from discontinuous incoming boundary data, which we call the boundary-induced discontinuity. In particular, we give two kinds of sufficient conditions on the incoming boundary data for the boundary-induced discontinuity. We propose a method to reconstruct the attenuation coefficient from jumps in boundary measurements.

*+*[Abstract](570)

*+*[HTML](167)

*+*[PDF](444.17KB)

**Abstract:**

In this paper we study Current Density Impedance Imaging (CDII) on Electrical Networks. The inverse problem is to determine the conductivity matrix of an electrical network from the prescribed knowledge of the magnitude of the induced current along the edges coupled with the imposed voltage or injected current on the boundary nodes. This problem leads to a weighted

*+*[Abstract](632)

*+*[HTML](182)

*+*[PDF](1903.18KB)

**Abstract:**

We consider an inverse obstacle problem for the acoustic transient wave equation. More precisely, we wish to reconstruct an obstacle characterized by a Dirichlet boundary condition from lateral Cauchy data given on a subpart of the boundary of the domain and over a finite interval of time. We first give a proof of uniqueness for that problem and then propose an "exterior approach" based on a mixed formulation of quasi-reversibility and a level set method in order to actually solve the problem. Some 2D numerical experiments are provided to show that our approach is effective.

*+*[Abstract](744)

*+*[HTML](306)

*+*[PDF](566.78KB)

**Abstract:**

The backwards diffusion equation is one of the classical ill-posed inverse problems, related to a wide range of applications, and has been extensively studied over the last 50 years. One of the first methods was that of *quasireversibility* whereby the parabolic operator is replaced by a differential operator for which the backwards problem in time is well posed. This is in fact the direction we will take but will do so with a nonlocal operator; an equation of fractional order in time for which the backwards problem is known to be "almost well posed."

We shall look at various possible options and strategies but our conclusion for the best of these will exploit the linearity of the problem to break the inversion into distinct frequency bands and to use a different fractional order for each. The fractional exponents will be chosen using the discrepancy principle under the assumption we have an estimate of the noise level in the data. An analysis of the method is provided as are some illustrative numerical examples.

2017 Impact Factor: 1.465

## Readers

## Authors

## Editors

## Referees

## Librarians

## Email Alert

Add your name and e-mail address to receive news of forthcoming issues of this journal:

[Back to Top]