2015, 2015(special): 974-980. doi: 10.3934/proc.2015.0974

A model of malignant gliomas throug symmetry reductions

1. 

Dpto. de Matemáticas, Universidad de Cádiz, Polígono del Río San Pedro s/n 11510 Puerto Real, Cádiz, Spain, Spain, Spain

Received  September 2014 Revised  May 2015 Published  November 2015

A glioma is a kind of tumor that starts in the brain or spine. The most common site of gliomas is in the brain. Most of the mathematical models in use for malignant gliomas are based on a simple reaction-diffusion equation: the Fisher equation [3]. A nonlinear wave model describing the fundamental features of these tumors has been introduced in [5], by V.M. Pérez and collaborators. In this work, we study this model from the point of view of the theory of symmetry reductions in partial differential equations. We obtain the classical symmetries admitted by the system, then, we use the transformations groups to reduce the equations to ordinary differential equations. Some exact solutions are derived from the solutions of a simple non-linear ordinary differential equation.
Citation: María Rosa, María S. Bruzón, M. L. Gandarias. A model of malignant gliomas throug symmetry reductions. Conference Publications, 2015, 2015 (special) : 974-980. doi: 10.3934/proc.2015.0974
References:
[1]

G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations, Applied Mathematical Sciences, 154 (2002). Google Scholar

[2]

N. A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations Chaos., Solitons and Fractals, 24 (2005), 1217. Google Scholar

[3]

J. D. Murray, Mathematical Biology,, Third Edition, (2002). Google Scholar

[4]

P. Olver, Applications of Lie Groups to Differential Equations,, Springer-Verlag, (1993). Google Scholar

[5]

V. M. Pérez-García, G. F. Calvo, J. Belmonte-Beitia, D. Diego, and L. Pérez-Romasanta, Bright solitary waves in malignant gliomas,, Physical Review E., 84 (2011). Google Scholar

[6]

K. R. Swanson, C. Bridge, J. D. Murray, and E. C. Alvord, Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion,, Journal of the Neurological Sciences, 216 (2003), 1. Google Scholar

[7]

N. K. Vitanov, Modified method of simplest equation: Powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs,, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 1176. Google Scholar

[8]

E. Yombaa, Exact Solitary Waves of the Fisher Equation,, IMA Preprint Series, (2005). Google Scholar

show all references

References:
[1]

G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations, Applied Mathematical Sciences, 154 (2002). Google Scholar

[2]

N. A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations Chaos., Solitons and Fractals, 24 (2005), 1217. Google Scholar

[3]

J. D. Murray, Mathematical Biology,, Third Edition, (2002). Google Scholar

[4]

P. Olver, Applications of Lie Groups to Differential Equations,, Springer-Verlag, (1993). Google Scholar

[5]

V. M. Pérez-García, G. F. Calvo, J. Belmonte-Beitia, D. Diego, and L. Pérez-Romasanta, Bright solitary waves in malignant gliomas,, Physical Review E., 84 (2011). Google Scholar

[6]

K. R. Swanson, C. Bridge, J. D. Murray, and E. C. Alvord, Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion,, Journal of the Neurological Sciences, 216 (2003), 1. Google Scholar

[7]

N. K. Vitanov, Modified method of simplest equation: Powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs,, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 1176. Google Scholar

[8]

E. Yombaa, Exact Solitary Waves of the Fisher Equation,, IMA Preprint Series, (2005). Google Scholar

[1]

María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1331-1339. doi: 10.3934/dcdss.2015.8.1331

[2]

Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040

[3]

Miriam Manoel, Patrícia Tempesta. Binary differential equations with symmetries. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1957-1974. doi: 10.3934/dcds.2019082

[4]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[5]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[6]

Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

[7]

Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2639-2655. doi: 10.3934/dcdsb.2018268

[8]

Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591

[9]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[10]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[11]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[12]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[13]

Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems & Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020

[14]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[15]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[16]

Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907

[17]

Susanna V. Haziot. Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4415-4427. doi: 10.3934/dcds.2019179

[18]

Qiong Meng, X. H. Tang. Multiple solutions of second-order ordinary differential equation via Morse theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 945-958. doi: 10.3934/cpaa.2012.11.945

[19]

Jan-Hendrik Webert, Philip E. Gill, Sven-Joachim Kimmerle, Matthias Gerdts. A study of structure-exploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1259-1282. doi: 10.3934/dcdss.2018071

[20]

Lijuan Wang, Yashan Xu. Admissible controls and controllable sets for a linear time-varying ordinary differential equation. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1001-1019. doi: 10.3934/mcrf.2018043

 Impact Factor: 

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]