2015, 2015(special): 936-944. doi: 10.3934/proc.2015.0936

Optimal design of sensors for a damped wave equation

1. 

CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris

2. 

Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, Institut Universitaire de France, F-75005, Paris

Received  September 2014 Revised  January 2015 Published  November 2015

In this paper we model and solve the problem of shaping and placing in an optimal way sensors for a wave equation with constant damping in a bounded open connected subset $\Omega$ of $\mathbb{R}^n$. Sensors are modeled by subdomains of $\Omega$ of a given measure $L|\Omega|$, with $0 < L < 1$. We prove that, if $L$ is close enough to $1$, then the optimal design problem has a unique solution, which is characterized by a finite number of low frequency modes. In particular the maximizing sequence built from spectral approximations is stationary.
Citation: Yannick Privat, Emmanuel Trélat. Optimal design of sensors for a damped wave equation. Conference Publications, 2015, 2015 (special) : 936-944. doi: 10.3934/proc.2015.0936
References:
[1]

G. Allaire, S. Aubry and F. Jouve, Eigenfrequency optimization in optimal design,, Comput. Methods Appl. Mech. Engrg., 190 (2001), 3565. Google Scholar

[2]

A. Armaoua and M. Demetriou, Optimal actuator/sensor placement for linear parabolic PDEs using spatial $H^2$ norm,, Chemical Engineering Science, 61 (2006), 7351. Google Scholar

[3]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024. Google Scholar

[4]

J.C. Bellido and A. Donoso, An optimal design problem in wave propagation,, J. Optim. Theory Appl., 134 (2007), 339. Google Scholar

[5]

N. Burq, Large-time dynamics for the one-dimensional Schrödinger equation,, Proc. Roy. Soc. Edinburgh Sect. A., 141 (2011), 227. Google Scholar

[6]

N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes (French) [A necessary and sufficient condition for the exact controllability of the wave equation],, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 749. Google Scholar

[7]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory,, Invent. Math., 173 (2008), 449. Google Scholar

[8]

N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1. Google Scholar

[9]

P. Hébrard and A. Henrot, Optimal shape and position of the actuators for the stabilization of a string,, Syst. Cont. Letters, 48 (2003), 199. Google Scholar

[10]

P. Hébrard and A. Henrot, A spillover phenomenon in the optimal location of actuators,, SIAM J. Control Optim. \textbf{44} {2005}, 44 (): 349. Google Scholar

[11]

K. Morris, Linear-quadratic optimal actuator location,, IEEE Trans. Automat. Control, 56 (2011), 113. Google Scholar

[12]

R.E.A.C. Paley and A. Zygmund, On some series of functions (1) (2) (3),, Proc. Camb. Phil. Soc., 26 (1930), 337. Google Scholar

[13]

Y. Privat, E. Trélat and E. Zuazua, Complexity and regularity of maximal energy domains for the wave equation with fixed initial data,, Discrete Cont. Dynam. Syst., 35 (2015), 6133. Google Scholar

[14]

Y. Privat, E. Trélat and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 1097. Google Scholar

[15]

Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the one-dimensional wave equation,, J. Fourier Anal. Appl., 19 (2013), 514. Google Scholar

[16]

Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the multi-dimensional wave and Schr\"odinger equations in quantum ergodic domains,, to appear in J. Eur. Math. Soc., (2015). Google Scholar

[17]

Y. Privat, E. Trélat and E. Zuazua, Optimal shape and location of sensors for parabolic equations with random initial data,, Arch. Ration. Mech. Anal., 216 (2015), 921. Google Scholar

[18]

O. Sigmund and J.S. Jensen, Systematic design of phononic band-gap materials and structures by topology optimization,, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 361 (2003), 1001. Google Scholar

[19]

M. Tucsnak and G. Weiss, Observation and control for operator semigroups,, Birkhäuser Advanced Texts: Basler Lehrbücher, (2009). Google Scholar

[20]

D. Ucinski and M. Patan, Sensor network design fo the estimation of spatially distributed processes,, Int. J. Appl. Math. Comput. Sci., 20 (2010), 459. Google Scholar

[21]

A. Vande Wouwer, N. Point, S. Porteman, M. Remy, An approach to the selection of optimal sensor locations in distributed parameter systems,, J. Process Control, 10 (2000), 291. Google Scholar

show all references

References:
[1]

G. Allaire, S. Aubry and F. Jouve, Eigenfrequency optimization in optimal design,, Comput. Methods Appl. Mech. Engrg., 190 (2001), 3565. Google Scholar

[2]

A. Armaoua and M. Demetriou, Optimal actuator/sensor placement for linear parabolic PDEs using spatial $H^2$ norm,, Chemical Engineering Science, 61 (2006), 7351. Google Scholar

[3]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024. Google Scholar

[4]

J.C. Bellido and A. Donoso, An optimal design problem in wave propagation,, J. Optim. Theory Appl., 134 (2007), 339. Google Scholar

[5]

N. Burq, Large-time dynamics for the one-dimensional Schrödinger equation,, Proc. Roy. Soc. Edinburgh Sect. A., 141 (2011), 227. Google Scholar

[6]

N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes (French) [A necessary and sufficient condition for the exact controllability of the wave equation],, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 749. Google Scholar

[7]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory,, Invent. Math., 173 (2008), 449. Google Scholar

[8]

N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1. Google Scholar

[9]

P. Hébrard and A. Henrot, Optimal shape and position of the actuators for the stabilization of a string,, Syst. Cont. Letters, 48 (2003), 199. Google Scholar

[10]

P. Hébrard and A. Henrot, A spillover phenomenon in the optimal location of actuators,, SIAM J. Control Optim. \textbf{44} {2005}, 44 (): 349. Google Scholar

[11]

K. Morris, Linear-quadratic optimal actuator location,, IEEE Trans. Automat. Control, 56 (2011), 113. Google Scholar

[12]

R.E.A.C. Paley and A. Zygmund, On some series of functions (1) (2) (3),, Proc. Camb. Phil. Soc., 26 (1930), 337. Google Scholar

[13]

Y. Privat, E. Trélat and E. Zuazua, Complexity and regularity of maximal energy domains for the wave equation with fixed initial data,, Discrete Cont. Dynam. Syst., 35 (2015), 6133. Google Scholar

[14]

Y. Privat, E. Trélat and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 1097. Google Scholar

[15]

Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the one-dimensional wave equation,, J. Fourier Anal. Appl., 19 (2013), 514. Google Scholar

[16]

Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the multi-dimensional wave and Schr\"odinger equations in quantum ergodic domains,, to appear in J. Eur. Math. Soc., (2015). Google Scholar

[17]

Y. Privat, E. Trélat and E. Zuazua, Optimal shape and location of sensors for parabolic equations with random initial data,, Arch. Ration. Mech. Anal., 216 (2015), 921. Google Scholar

[18]

O. Sigmund and J.S. Jensen, Systematic design of phononic band-gap materials and structures by topology optimization,, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 361 (2003), 1001. Google Scholar

[19]

M. Tucsnak and G. Weiss, Observation and control for operator semigroups,, Birkhäuser Advanced Texts: Basler Lehrbücher, (2009). Google Scholar

[20]

D. Ucinski and M. Patan, Sensor network design fo the estimation of spatially distributed processes,, Int. J. Appl. Math. Comput. Sci., 20 (2010), 459. Google Scholar

[21]

A. Vande Wouwer, N. Point, S. Porteman, M. Remy, An approach to the selection of optimal sensor locations in distributed parameter systems,, J. Process Control, 10 (2000), 291. Google Scholar

[1]

Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations & Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026

[2]

V. Pata, Sergey Zelik. A remark on the damped wave equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 611-616. doi: 10.3934/cpaa.2006.5.611

[3]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[4]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[5]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[6]

Martin Michálek, Dalibor Pražák, Jakub Slavík. Semilinear damped wave equation in locally uniform spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1673-1695. doi: 10.3934/cpaa.2017080

[7]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[8]

Pierre Fabrie, Cedric Galusinski, A. Miranville, Sergey Zelik. Uniform exponential attractors for a singularly perturbed damped wave equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 211-238. doi: 10.3934/dcds.2004.10.211

[9]

Pedro Freitas. The linear damped wave equation, Hamiltonian symmetry, and the importance of being odd. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 635-640. doi: 10.3934/dcds.1998.4.635

[10]

Davit Martirosyan. Exponential mixing for the white-forced damped nonlinear wave equation. Evolution Equations & Control Theory, 2014, 3 (4) : 645-670. doi: 10.3934/eect.2014.3.645

[11]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[12]

Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure & Applied Analysis, 2009, 8 (2) : 601-620. doi: 10.3934/cpaa.2009.8.601

[13]

Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094

[14]

Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41

[15]

Piotr Kokocki. Homotopy invariants methods in the global dynamics of strongly damped wave equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3227-3250. doi: 10.3934/dcds.2016.36.3227

[16]

Pengyan Ding, Zhijian Yang. Attractors of the strongly damped Kirchhoff wave equation on $\mathbb{R}^{N}$. Communications on Pure & Applied Analysis, 2019, 18 (2) : 825-843. doi: 10.3934/cpaa.2019040

[17]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[18]

Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations & Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011

[19]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[20]

Nikos I. Karachalios, Athanasios N Lyberopoulos. On the dynamics of a degenerate damped semilinear wave equation in \mathbb{R}^N : the non-compact case. Conference Publications, 2007, 2007 (Special) : 531-540. doi: 10.3934/proc.2007.2007.531

 Impact Factor: 

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]