2015, 2015(special): 923-935. doi: 10.3934/proc.2015.0923

A functional-analytic technique for the study of analytic solutions of PDEs

1. 

Department of Civil Engineering, University of Patras, 26500 Patras, Greece

2. 

Department of Mathematics, University of Patras, 26500 Patras, Greece

Received  August 2014 Revised  December 2014 Published  November 2015

A functional-analytic method is used to study the existence and the uniqueness of bounded, analytic and entire complex solutions of partial differential equations. As a benchmark problem, this method is applied to the nonlinear Benjamin--Bona--Mahony equation and the associated to this, linear equation. The predicted solutions are in power series form and two concrete examples are given for specific initial conditions.
Citation: Eugenia N. Petropoulou, Panayiotis D. Siafarikas. A functional-analytic technique for the study of analytic solutions of PDEs. Conference Publications, 2015, 2015 (special) : 923-935. doi: 10.3934/proc.2015.0923
References:
[1]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47. Google Scholar

[2]

G. Caciotta and F. Nicoló, Local and global analytic solutions for a class of characteristic problems of the Einstein vacuum equations in the "double null foliation gauge",, Ann. Henri Poincare, 13 (2012), 1167. Google Scholar

[3]

G. M. Coclite, F. Gargano and V. Sciacca, Analytic solutions and singularity formation for the Peakon $b$-family equations,, Acta Appl. Math., 122 (2012), 419. Google Scholar

[4]

C. J. Earle and R. S. Hamilton, A fixed point theorem for holomorphic mappings, in Global Analysis (Proc. Sympos. Pure Math., (1970), 61. Google Scholar

[5]

L. C. Evans, Partial differential equations,, $2^{nd}$ edition, (2010). Google Scholar

[6]

N. Hayashi and K. Kato, Global existence of small analytic solutions to Schrödinger equations with quadratic nonlinearity,, Comm. Partial Differential Equations, 22 (1997), 773. Google Scholar

[7]

A. A. Himonas and G. Petronilho, Analytic well-posedness of periodic gKdV,, J. Differential Equations, 253 (2012), 3101. Google Scholar

[8]

E. K. Ifantis, Solution of the Schrödinger equation in the Hardy-Lebesgue space,, J. Mathematical Phys., 12 (1971), 1961. Google Scholar

[9]

E. K. Ifantis, Analytic solutions for nonlinear differential equations,, J. Math. Anal. Appl., 124 (1987), 339. Google Scholar

[10]

E. K. Ifantis, Global analytic solutions of the radial nonlinear wave equation,, J. Math. Anal. Appl., 124 (1987), 381. Google Scholar

[11]

J. Kajiwara, Holomorphic solutions of a partial differential equation of mixed type,, Math. Balkanica, 2 (1972), 76. Google Scholar

[12]

T. Kusano and S. Oharu, Bounded entire solutions of second order semilinear elliptic equations with application to a parabolic initial value problem,, Indiana Univ. Math. J., 34 (1985), 85. Google Scholar

[13]

E. N. Petropoulou and P. D. Siafarikas, Analytic solutions of some non-linear ordinary differential equations,, Dynam. Systems Appl. 13 (2004), 13 (2004), 283. Google Scholar

[14]

E. N. Petropoulou and P. D. Siafarikas, Polynomial solutions of linear partial differential equations,, Commun. Pure Appl. Anal. 8 (2009), 8 (2009), 1053. Google Scholar

[15]

E. N. Petropoulou, P. D. Siafarikas and E. E. Tzirtzilakis, A "discretization" technique for the solution of ODEs,, J. Math. Anal. Appl. 331 (2007), 331 (2007), 279. Google Scholar

[16]

E. N. Petropoulou, P. D. Siafarikas and E. E. Tzirtzilakis, A "discretization" technique for the solution of ODEs II,, Numer. Funct. Anal. Optim. 30 (2009), 30 (2009), 613. Google Scholar

[17]

E. N. Petropoulou and E. E. Tzirtzilakis, On the logistic equation in the complex plane,, Numer. Funct. Anal. Optim. 34 (2013), 34 (2013), 770. Google Scholar

[18]

I. G. Petrovsky, Lecture on partial differential equations., Translated from the Russian by A. Shenitzer, (1957). Google Scholar

[19]

A. Vourdas, Analytic representations in the unit disc and applications to phase states and squeezing,, Phys. Rev. A 45 (1992), 45 (1992), 1943. Google Scholar

[20]

G. Zampieri, A sufficient condition for existence of real analytic solutions of P.D.E. with constant coefficients, in open sets of $\mathbbR^{2}$,, Rend. Sem. Mat. Univ. Padova 63 (1980), 63 (1980), 83. Google Scholar

[21]

G. Zampieri, Analytic solutions of P.D.E.'s., Ann. Univ. Ferrara-Sez. VII-Sc. Mat. XLV (1999), XLV (1999), 365. Google Scholar

show all references

References:
[1]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47. Google Scholar

[2]

G. Caciotta and F. Nicoló, Local and global analytic solutions for a class of characteristic problems of the Einstein vacuum equations in the "double null foliation gauge",, Ann. Henri Poincare, 13 (2012), 1167. Google Scholar

[3]

G. M. Coclite, F. Gargano and V. Sciacca, Analytic solutions and singularity formation for the Peakon $b$-family equations,, Acta Appl. Math., 122 (2012), 419. Google Scholar

[4]

C. J. Earle and R. S. Hamilton, A fixed point theorem for holomorphic mappings, in Global Analysis (Proc. Sympos. Pure Math., (1970), 61. Google Scholar

[5]

L. C. Evans, Partial differential equations,, $2^{nd}$ edition, (2010). Google Scholar

[6]

N. Hayashi and K. Kato, Global existence of small analytic solutions to Schrödinger equations with quadratic nonlinearity,, Comm. Partial Differential Equations, 22 (1997), 773. Google Scholar

[7]

A. A. Himonas and G. Petronilho, Analytic well-posedness of periodic gKdV,, J. Differential Equations, 253 (2012), 3101. Google Scholar

[8]

E. K. Ifantis, Solution of the Schrödinger equation in the Hardy-Lebesgue space,, J. Mathematical Phys., 12 (1971), 1961. Google Scholar

[9]

E. K. Ifantis, Analytic solutions for nonlinear differential equations,, J. Math. Anal. Appl., 124 (1987), 339. Google Scholar

[10]

E. K. Ifantis, Global analytic solutions of the radial nonlinear wave equation,, J. Math. Anal. Appl., 124 (1987), 381. Google Scholar

[11]

J. Kajiwara, Holomorphic solutions of a partial differential equation of mixed type,, Math. Balkanica, 2 (1972), 76. Google Scholar

[12]

T. Kusano and S. Oharu, Bounded entire solutions of second order semilinear elliptic equations with application to a parabolic initial value problem,, Indiana Univ. Math. J., 34 (1985), 85. Google Scholar

[13]

E. N. Petropoulou and P. D. Siafarikas, Analytic solutions of some non-linear ordinary differential equations,, Dynam. Systems Appl. 13 (2004), 13 (2004), 283. Google Scholar

[14]

E. N. Petropoulou and P. D. Siafarikas, Polynomial solutions of linear partial differential equations,, Commun. Pure Appl. Anal. 8 (2009), 8 (2009), 1053. Google Scholar

[15]

E. N. Petropoulou, P. D. Siafarikas and E. E. Tzirtzilakis, A "discretization" technique for the solution of ODEs,, J. Math. Anal. Appl. 331 (2007), 331 (2007), 279. Google Scholar

[16]

E. N. Petropoulou, P. D. Siafarikas and E. E. Tzirtzilakis, A "discretization" technique for the solution of ODEs II,, Numer. Funct. Anal. Optim. 30 (2009), 30 (2009), 613. Google Scholar

[17]

E. N. Petropoulou and E. E. Tzirtzilakis, On the logistic equation in the complex plane,, Numer. Funct. Anal. Optim. 34 (2013), 34 (2013), 770. Google Scholar

[18]

I. G. Petrovsky, Lecture on partial differential equations., Translated from the Russian by A. Shenitzer, (1957). Google Scholar

[19]

A. Vourdas, Analytic representations in the unit disc and applications to phase states and squeezing,, Phys. Rev. A 45 (1992), 45 (1992), 1943. Google Scholar

[20]

G. Zampieri, A sufficient condition for existence of real analytic solutions of P.D.E. with constant coefficients, in open sets of $\mathbbR^{2}$,, Rend. Sem. Mat. Univ. Padova 63 (1980), 63 (1980), 83. Google Scholar

[21]

G. Zampieri, Analytic solutions of P.D.E.'s., Ann. Univ. Ferrara-Sez. VII-Sc. Mat. XLV (1999), XLV (1999), 365. Google Scholar

[1]

Hui Yin, Huijiang Zhao. Nonlinear stability of boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equation in the half space. Kinetic & Related Models, 2009, 2 (3) : 521-550. doi: 10.3934/krm.2009.2.521

[2]

Anne-Sophie de Suzzoni. Continuity of the flow of the Benjamin-Bona-Mahony equation on probability measures. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2905-2920. doi: 10.3934/dcds.2015.35.2905

[3]

Milena Stanislavova. On the global attractor for the damped Benjamin-Bona-Mahony equation. Conference Publications, 2005, 2005 (Special) : 824-832. doi: 10.3934/proc.2005.2005.824

[4]

Khaled El Dika. Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 583-622. doi: 10.3934/dcds.2005.13.583

[5]

Hirokazu Ninomiya. Entire solutions and traveling wave solutions of the Allen-Cahn-Nagumo equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2001-2019. doi: 10.3934/dcds.2019084

[6]

C. H. Arthur Cheng, John M. Hong, Ying-Chieh Lin, Jiahong Wu, Juan-Ming Yuan. Well-posedness of the two-dimensional generalized Benjamin-Bona-Mahony equation on the upper half plane. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 763-779. doi: 10.3934/dcdsb.2016.21.763

[7]

Vishal Vasan, Bernard Deconinck. Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3171-3188. doi: 10.3934/dcds.2013.33.3171

[8]

Wenxia Chen, Ping Yang, Weiwei Gao, Lixin Tian. The approximate solution for Benjamin-Bona-Mahony equation under slowly varying medium. Communications on Pure & Applied Analysis, 2018, 17 (3) : 823-848. doi: 10.3934/cpaa.2018042

[9]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[10]

M. S. Bruzón, M. L. Gandarias, J. C. Camacho. Classical and nonclassical symmetries and exact solutions for a generalized Benjamin equation. Conference Publications, 2015, 2015 (special) : 151-158. doi: 10.3934/proc.2015.0151

[11]

Christos Sourdis. On the growth of the energy of entire solutions to the vector Allen-Cahn equation. Communications on Pure & Applied Analysis, 2015, 14 (2) : 577-584. doi: 10.3934/cpaa.2015.14.577

[12]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Bounded solutions of the Boltzmann equation in the whole space. Kinetic & Related Models, 2011, 4 (1) : 17-40. doi: 10.3934/krm.2011.4.17

[13]

Mario Pulvirenti, Sergio Simonella, Anton Trushechkin. Microscopic solutions of the Boltzmann-Enskog equation in the series representation. Kinetic & Related Models, 2018, 11 (4) : 911-931. doi: 10.3934/krm.2018036

[14]

Christian Pötzsche. Nonautonomous continuation of bounded solutions. Communications on Pure & Applied Analysis, 2011, 10 (3) : 937-961. doi: 10.3934/cpaa.2011.10.937

[15]

Okihiro Sawada. Analytic rates of solutions to the Euler equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1409-1415. doi: 10.3934/dcdss.2013.6.1409

[16]

Jaime Angulo Pava, Carlos Banquet, Márcia Scialom. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 851-871. doi: 10.3934/dcds.2011.30.851

[17]

Giuseppina Autuori, Patrizia Pucci. Entire solutions of nonlocal elasticity models for composite materials. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 357-377. doi: 10.3934/dcdss.2018020

[18]

Antonio Vitolo. On the growth of positive entire solutions of elliptic PDEs and their gradients. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1335-1346. doi: 10.3934/dcdss.2014.7.1335

[19]

Wan-Tong Li, Li Zhang, Guo-Bao Zhang. Invasion entire solutions in a competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1531-1560. doi: 10.3934/dcds.2015.35.1531

[20]

Patrizia Pucci, Marco Rigoli. Entire solutions of singular elliptic inequalities on complete manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 115-137. doi: 10.3934/dcds.2008.20.115

 Impact Factor: 

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

[Back to Top]