2015, 2015(special): 723-732. doi: 10.3934/proc.2015.0723

On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques

1. 

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16, S.Kovalevskaja street, Ekaterinburg, 620990, Russian Federation

Received  July 2014 Revised  January 2015 Published  November 2015

Problems of feedback terminal target control for linear discrete-time systems without and with uncertainties are considered. We continue the development of methods of control synthesis using polyhedral (parallelotope-valued) solvability tubes. The cases without uncertainties, with additive parallelotope-bounded uncertainties, and also with interval uncertainties in coefficients of the system are considered. Also the same systems under state constraints are considered. Nonlinear recurrent relations are presented for polyhedral solvability tubes for each of the mentioned cases. Two types of control strategies, which can be calculated on the base of the mentioned tubes, are proposed. Controls of the second type can be calculated by explicit formulas. Results of computer simulations are presented.
Citation: Elena K. Kostousova. On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques. Conference Publications, 2015, 2015 (special) : 723-732. doi: 10.3934/proc.2015.0723
References:
[1]

I. M. Anan'evskii, N. V. Anokhin and A. I. Ovseevich, Synthesis of a bounded control for linear dynamical systems using the general Lyapunov function,, Dokl. Akad. Nauk, 434 (2010), 319. Google Scholar

[2]

R. Baier and F. Lempio, Computing Aumann's integral,, in Modeling Techniques for Uncertain Systems (Sopron, 18 (1994), 71. Google Scholar

[3]

N. S. Bakhvalov, N. P. Zhidkov and G. M. Kobel'kov, Numerical Methods,, Nauka, (1987). Google Scholar

[4]

B. R. Barmish and J. Sankaran, The propagation of parametric uncertainty via polytopes,, IEEE Trans. Automat. Control., 24 (1979), 346. Google Scholar

[5]

F. L. Chernousko, State Estimation for Dynamic Systems,, CRC Press, (1994). Google Scholar

[6]

A. N. Daryin and A. B. Kurzhanski, Parallel algorithm for calculating the invariant sets of high-dimensional linear systems under uncertainty,, Zh. Vychisl. Mat. Mat. Fiz., 53 (2013), 47. Google Scholar

[7]

T. Filippova, Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty,, Discrete Contin. Dyn. Syst. 2011, (2011), 410. Google Scholar

[8]

M. I. Gusev, External estimates of the reachability sets of nonlinear controlled systems,, Avtomat. i Telemekh., 73 (2012), 39. Google Scholar

[9]

E. K. Kostousova, Control synthesis via parallelotopes: optimization and parallel computations,, Optim. Methods Softw., 14 (2001), 267. Google Scholar

[10]

E. K. Kostousova, Polyhedral estimates for attainability sets of linear multistage systems with integral constraints on the control,, Computational Technologies, 8 (2003), 55. Google Scholar

[11]

E. K. Kostousova, On polyhedral estimates in problems of the synthesis of control strategies in linear multistep systems,, Algorithms and Software for Parallel Computations, 9 (2006), 84. Google Scholar

[12]

E. K. Kostousova, On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty,, Discrete Contin. Dyn. Syst. 2011, II (2011), 864. Google Scholar

[13]

E. K. Kostousova, On tight polyhedral estimates for reachable sets of linear differential systems,, AIP Conf. Proc., 1493 (2012), 579. Google Scholar

[14]

N. N. Krasovskii and A. I. Subbotin, Positional Differential Games,, Nauka, (1974). Google Scholar

[15]

V. M. Kuntsevich and A. B. Kurzhanski, Attainability domains for linear and some classes of nonlinear discrete systems and their control,, Problemy Upravlen. Inform., 42 (2010), 5. Google Scholar

[16]

A. B. Kurzhanskii and N. B. Mel'nikov, On the problem of the synthesis of controls: the Pontryagin alternative integral and the Hamilton-Jacobi equation,, Mat. Sb. 191, 191 (2000), 69. Google Scholar

[17]

A. B. Kurzhanski and O. I. Nikonov, On the problem of synthesizing control strategies. Evolution equations and set-valued integration,, Dokl. Akad. Nauk SSSR, 311 (1990), 788. Google Scholar

[18]

A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control,, Birkhäuser, (1997). Google Scholar

[19]

A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes. Theory and Computation (Systems & Control: Foundations & Applications, Book 85),, Birkhäuser Basel, (2014). Google Scholar

[20]

J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions,, SIAM Journal of Optimization, 9 (1998), 112. Google Scholar

[21]

B. T. Polyak and P. S. Scherbakov, Robust Stability and Control,, Nauka, (2002). Google Scholar

[22]

R. G. Schneider, Convex Bodies: The Brunn-Minkowski Theory,, Cambridge Univ. Press, (1993). Google Scholar

[23]

A. M. Taras'yev, A. A. Uspenskiy and V. N. Ushakov, Approximation schemas and finite-difference operators for constructing generalized solutions of Hamilton-Jacobi equations,, Izv. Ross. Akad. Nauk Tekhn. Kibernet., 33 (1994), 173. Google Scholar

[24]

V. V. Vasin and I. I. Eremin, Operators and Iterative Processes of Fejér Type. Theory and Applications,, Ross. Akad. Nauk Ural. Otdel., (2005). Google Scholar

[25]

A. Yu. Vazhentsev, Internal ellipsoidal approximations for problems of the synthesis of a control with bounded coordinates,, Izv. Akad. Nauk Teor. Sist. Upr., (2000), 70. Google Scholar

[26]

V. M. Veliov, Second order discrete approximations to strongly convex differential inclusions,, Systems Control Lett., 13 (1989), 263. Google Scholar

show all references

References:
[1]

I. M. Anan'evskii, N. V. Anokhin and A. I. Ovseevich, Synthesis of a bounded control for linear dynamical systems using the general Lyapunov function,, Dokl. Akad. Nauk, 434 (2010), 319. Google Scholar

[2]

R. Baier and F. Lempio, Computing Aumann's integral,, in Modeling Techniques for Uncertain Systems (Sopron, 18 (1994), 71. Google Scholar

[3]

N. S. Bakhvalov, N. P. Zhidkov and G. M. Kobel'kov, Numerical Methods,, Nauka, (1987). Google Scholar

[4]

B. R. Barmish and J. Sankaran, The propagation of parametric uncertainty via polytopes,, IEEE Trans. Automat. Control., 24 (1979), 346. Google Scholar

[5]

F. L. Chernousko, State Estimation for Dynamic Systems,, CRC Press, (1994). Google Scholar

[6]

A. N. Daryin and A. B. Kurzhanski, Parallel algorithm for calculating the invariant sets of high-dimensional linear systems under uncertainty,, Zh. Vychisl. Mat. Mat. Fiz., 53 (2013), 47. Google Scholar

[7]

T. Filippova, Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty,, Discrete Contin. Dyn. Syst. 2011, (2011), 410. Google Scholar

[8]

M. I. Gusev, External estimates of the reachability sets of nonlinear controlled systems,, Avtomat. i Telemekh., 73 (2012), 39. Google Scholar

[9]

E. K. Kostousova, Control synthesis via parallelotopes: optimization and parallel computations,, Optim. Methods Softw., 14 (2001), 267. Google Scholar

[10]

E. K. Kostousova, Polyhedral estimates for attainability sets of linear multistage systems with integral constraints on the control,, Computational Technologies, 8 (2003), 55. Google Scholar

[11]

E. K. Kostousova, On polyhedral estimates in problems of the synthesis of control strategies in linear multistep systems,, Algorithms and Software for Parallel Computations, 9 (2006), 84. Google Scholar

[12]

E. K. Kostousova, On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty,, Discrete Contin. Dyn. Syst. 2011, II (2011), 864. Google Scholar

[13]

E. K. Kostousova, On tight polyhedral estimates for reachable sets of linear differential systems,, AIP Conf. Proc., 1493 (2012), 579. Google Scholar

[14]

N. N. Krasovskii and A. I. Subbotin, Positional Differential Games,, Nauka, (1974). Google Scholar

[15]

V. M. Kuntsevich and A. B. Kurzhanski, Attainability domains for linear and some classes of nonlinear discrete systems and their control,, Problemy Upravlen. Inform., 42 (2010), 5. Google Scholar

[16]

A. B. Kurzhanskii and N. B. Mel'nikov, On the problem of the synthesis of controls: the Pontryagin alternative integral and the Hamilton-Jacobi equation,, Mat. Sb. 191, 191 (2000), 69. Google Scholar

[17]

A. B. Kurzhanski and O. I. Nikonov, On the problem of synthesizing control strategies. Evolution equations and set-valued integration,, Dokl. Akad. Nauk SSSR, 311 (1990), 788. Google Scholar

[18]

A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control,, Birkhäuser, (1997). Google Scholar

[19]

A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes. Theory and Computation (Systems & Control: Foundations & Applications, Book 85),, Birkhäuser Basel, (2014). Google Scholar

[20]

J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions,, SIAM Journal of Optimization, 9 (1998), 112. Google Scholar

[21]

B. T. Polyak and P. S. Scherbakov, Robust Stability and Control,, Nauka, (2002). Google Scholar

[22]

R. G. Schneider, Convex Bodies: The Brunn-Minkowski Theory,, Cambridge Univ. Press, (1993). Google Scholar

[23]

A. M. Taras'yev, A. A. Uspenskiy and V. N. Ushakov, Approximation schemas and finite-difference operators for constructing generalized solutions of Hamilton-Jacobi equations,, Izv. Ross. Akad. Nauk Tekhn. Kibernet., 33 (1994), 173. Google Scholar

[24]

V. V. Vasin and I. I. Eremin, Operators and Iterative Processes of Fejér Type. Theory and Applications,, Ross. Akad. Nauk Ural. Otdel., (2005). Google Scholar

[25]

A. Yu. Vazhentsev, Internal ellipsoidal approximations for problems of the synthesis of a control with bounded coordinates,, Izv. Akad. Nauk Teor. Sist. Upr., (2000), 70. Google Scholar

[26]

V. M. Veliov, Second order discrete approximations to strongly convex differential inclusions,, Systems Control Lett., 13 (1989), 263. Google Scholar

[1]

Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153

[2]

Elena K. Kostousova. On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty. Conference Publications, 2011, 2011 (Special) : 864-873. doi: 10.3934/proc.2011.2011.864

[3]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[4]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[5]

Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175

[6]

Aleksandar Zatezalo, Dušan M. Stipanović. Control of dynamical systems with discrete and uncertain observations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4665-4681. doi: 10.3934/dcds.2015.35.4665

[7]

Huan Su, Pengfei Wang, Xiaohua Ding. Stability analysis for discrete-time coupled systems with multi-diffusion by graph-theoretic approach and its application. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 253-269. doi: 10.3934/dcdsb.2016.21.253

[8]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[9]

Victor Kozyakin. Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3537-3556. doi: 10.3934/dcdsb.2018277

[10]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[11]

Sofian De Clercq, Koen De Turck, Bart Steyaert, Herwig Bruneel. Frame-bound priority scheduling in discrete-time queueing systems. Journal of Industrial & Management Optimization, 2011, 7 (3) : 767-788. doi: 10.3934/jimo.2011.7.767

[12]

Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010

[13]

Qiying Hu, Chen Xu, Wuyi Yue. A unified model for state feedback of discrete event systems II: Control synthesis problems. Journal of Industrial & Management Optimization, 2008, 4 (4) : 713-726. doi: 10.3934/jimo.2008.4.713

[14]

Qingling Zhang, Guoliang Wang, Wanquan Liu, Yi Zhang. Stabilization of discrete-time Markovian jump systems with partially unknown transition probabilities. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1197-1211. doi: 10.3934/dcdsb.2011.16.1197

[15]

Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489

[16]

Deepak Kumar, Ahmad Jazlan, Victor Sreeram, Roberto Togneri. Partial fraction expansion based frequency weighted model reduction for discrete-time systems. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 329-337. doi: 10.3934/naco.2016015

[17]

Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial & Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467

[18]

Jianquan Li, Zhien Ma, Fred Brauer. Global analysis of discrete-time SI and SIS epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (4) : 699-710. doi: 10.3934/mbe.2007.4.699

[19]

Alexander J. Zaslavski. The turnpike property of discrete-time control problems arising in economic dynamics. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 861-880. doi: 10.3934/dcdsb.2005.5.861

[20]

Simone Fiori. Auto-regressive moving-average discrete-time dynamical systems and autocorrelation functions on real-valued Riemannian matrix manifolds. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2785-2808. doi: 10.3934/dcdsb.2014.19.2785

 Impact Factor: 

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]