
Previous Article
Stability of neutral delay differential equations modeling wave propagation in cracked media
 PROC Home
 This Issue

Next Article
Nonholonomic constraints and their impact on discretizations of KleinGordon lattice dynamical models
Enhanced choice of the parameters in an iteratively regularized NewtonLandweber iteration in Banach space
1.  AlpenAdriaUniversität Klagenfurt, Universitätsstraße 6567, 9020 Klagenfurt 
2.  Università di Bologna, Piazza Porta S. Donato, 5, 40127  Bologna, Italy 
References:
[1] 
A. B. Bakushinsky and M. Yu. Kokurin, Iterative methods for approximate solution of inverse problems,, Springer, (2004). Google Scholar 
[2] 
M. Burger and S. Osher, Convergence rates of convex variational regularization,, Inverse Problems, 20 (2004), 1411. Google Scholar 
[3] 
C. Clason and B. Jin, A semismooth Newton method for nonlinear parameter identification problems with impulsive noise,, SIAM J. Imaging Sci, 5 (2012), 505. Google Scholar 
[4] 
M. Hanke, A. Neubauer, and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear illposed problems,, Numer. Math., 72 (1995), 21. Google Scholar 
[5] 
T. Hein and B. Hofmann, Approximate source conditions for nonlinear illposed problems  chances and limitations,, Inverse Problems, (2009). Google Scholar 
[6] 
T. Hein and K. S. Kazimierski, Accelerated Landweber iteration in Banach spaces,, Inverse Problems, (2010). Google Scholar 
[7] 
T. Hein and K. S. Kazimierski, Modified Landweber iteration in Banach spaces  convergence and convergence rates,, Numerical Functional Analysis and Optimization, 31 (2010), 1158. Google Scholar 
[8] 
B. Hofmann, B. Kaltenbacher, C. Pöschl, and O. Scherzer, A convergence rates result for Tikhonov regularization in Banach spaces with nonsmooth operators,, Inverse Problems, 23 (2007), 987. Google Scholar 
[9] 
B. Kaltenbacher and I. Tomba, Convergence rates for an iteratively regularized NewtonLandweber iteration in Banach space,, Inverse Problems, (2013). Google Scholar 
[10] 
B. Kaltenbacher and I. Tomba, Enhanced choice of the parameters in an iteratively regularized Newton Landweber iteration in Banach space,, arXiv:1408.5026 [math.NA], (2014). Google Scholar 
[11] 
Q. Jin, Inexact NewtonLandweber iteration for solving nonlinear inverse problems in Banach spaces,, Inverse Problems, (2012). Google Scholar 
[12] 
Q. Jin and L.Stals, Nonstationary iterated Tikhonov regularization for illposed problems in Banach spaces,, Inverse Problems, (2012). Google Scholar 
[13] 
B. Kaltenbacher, Convergence rates for the iteratively regularized Landweber iteration in Banach space,, Proceedings of the 25th IFIP TC7 Conference on System Modeling and Optimization, (2013), 38. Google Scholar 
[14] 
B. Kaltenbacher and B. Hofmann, Convergence rates for the iteratively regularized gaussnewton method in Banach spaces,, Inverse Problems, (2010). Google Scholar 
[15] 
B. Kaltenbacher, A. Neubauer, and O. Scherzer, Iterative Regularization Methods for Nonlinear Illposed Problems,, de Gruyter, (2007). Google Scholar 
[16] 
B. Kaltenbacher, F. Schöpfer, and T. Schuster, Convergence of some iterative methods for the regularization of nonlinear illposed problems in Banach spaces,, Inverse Problems, (2009). Google Scholar 
[17] 
A. Neubauer, T. Hein, B. Hofmann, S. Kindermann, and U. Tautenhahn, Improved and extended results for enhanced convergence rates of Tikhonov regularization in Banach spaces,, Appl. Anal., 89 (2010), 1729. Google Scholar 
[18] 
A. Rieder, On convergence rates of inexact Newton regularizations,, Numer. Math. 88 (2001), 88 (2001), 347. Google Scholar 
[19] 
A. Rieder, Inexact Newton regularization using conjugate gradients as inner iteration,, SIAM J. Numer. Anal. 43 (2005), 43 (2005), 604. Google Scholar 
[20] 
O. Scherzer, A modified Landweber iteration for solving parameter estimation problems,, Appl. Math. Optim., 38 (1998), 45. Google Scholar 
[21] 
F. Schöpfer, A. K. Louis, and T. Schuster, Nonlinear iterative methods for linear illposed problems in Banach spaces,, Inverse Problems, 22 (2006), 311. Google Scholar 
[22] 
T. Schuster, B. Kaltenbacher, B. Hofmann, and K. Kazimierski, Regularization Methods in Banach Spaces,, de Gruyter, (2012). Google Scholar 
[23] 
Z.B. Xu and G. F. Roach, Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces,, Journal of Mathematical Analysis and Applications, 157 (1991), 189. Google Scholar 
show all references
References:
[1] 
A. B. Bakushinsky and M. Yu. Kokurin, Iterative methods for approximate solution of inverse problems,, Springer, (2004). Google Scholar 
[2] 
M. Burger and S. Osher, Convergence rates of convex variational regularization,, Inverse Problems, 20 (2004), 1411. Google Scholar 
[3] 
C. Clason and B. Jin, A semismooth Newton method for nonlinear parameter identification problems with impulsive noise,, SIAM J. Imaging Sci, 5 (2012), 505. Google Scholar 
[4] 
M. Hanke, A. Neubauer, and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear illposed problems,, Numer. Math., 72 (1995), 21. Google Scholar 
[5] 
T. Hein and B. Hofmann, Approximate source conditions for nonlinear illposed problems  chances and limitations,, Inverse Problems, (2009). Google Scholar 
[6] 
T. Hein and K. S. Kazimierski, Accelerated Landweber iteration in Banach spaces,, Inverse Problems, (2010). Google Scholar 
[7] 
T. Hein and K. S. Kazimierski, Modified Landweber iteration in Banach spaces  convergence and convergence rates,, Numerical Functional Analysis and Optimization, 31 (2010), 1158. Google Scholar 
[8] 
B. Hofmann, B. Kaltenbacher, C. Pöschl, and O. Scherzer, A convergence rates result for Tikhonov regularization in Banach spaces with nonsmooth operators,, Inverse Problems, 23 (2007), 987. Google Scholar 
[9] 
B. Kaltenbacher and I. Tomba, Convergence rates for an iteratively regularized NewtonLandweber iteration in Banach space,, Inverse Problems, (2013). Google Scholar 
[10] 
B. Kaltenbacher and I. Tomba, Enhanced choice of the parameters in an iteratively regularized Newton Landweber iteration in Banach space,, arXiv:1408.5026 [math.NA], (2014). Google Scholar 
[11] 
Q. Jin, Inexact NewtonLandweber iteration for solving nonlinear inverse problems in Banach spaces,, Inverse Problems, (2012). Google Scholar 
[12] 
Q. Jin and L.Stals, Nonstationary iterated Tikhonov regularization for illposed problems in Banach spaces,, Inverse Problems, (2012). Google Scholar 
[13] 
B. Kaltenbacher, Convergence rates for the iteratively regularized Landweber iteration in Banach space,, Proceedings of the 25th IFIP TC7 Conference on System Modeling and Optimization, (2013), 38. Google Scholar 
[14] 
B. Kaltenbacher and B. Hofmann, Convergence rates for the iteratively regularized gaussnewton method in Banach spaces,, Inverse Problems, (2010). Google Scholar 
[15] 
B. Kaltenbacher, A. Neubauer, and O. Scherzer, Iterative Regularization Methods for Nonlinear Illposed Problems,, de Gruyter, (2007). Google Scholar 
[16] 
B. Kaltenbacher, F. Schöpfer, and T. Schuster, Convergence of some iterative methods for the regularization of nonlinear illposed problems in Banach spaces,, Inverse Problems, (2009). Google Scholar 
[17] 
A. Neubauer, T. Hein, B. Hofmann, S. Kindermann, and U. Tautenhahn, Improved and extended results for enhanced convergence rates of Tikhonov regularization in Banach spaces,, Appl. Anal., 89 (2010), 1729. Google Scholar 
[18] 
A. Rieder, On convergence rates of inexact Newton regularizations,, Numer. Math. 88 (2001), 88 (2001), 347. Google Scholar 
[19] 
A. Rieder, Inexact Newton regularization using conjugate gradients as inner iteration,, SIAM J. Numer. Anal. 43 (2005), 43 (2005), 604. Google Scholar 
[20] 
O. Scherzer, A modified Landweber iteration for solving parameter estimation problems,, Appl. Math. Optim., 38 (1998), 45. Google Scholar 
[21] 
F. Schöpfer, A. K. Louis, and T. Schuster, Nonlinear iterative methods for linear illposed problems in Banach spaces,, Inverse Problems, 22 (2006), 311. Google Scholar 
[22] 
T. Schuster, B. Kaltenbacher, B. Hofmann, and K. Kazimierski, Regularization Methods in Banach Spaces,, de Gruyter, (2012). Google Scholar 
[23] 
Z.B. Xu and G. F. Roach, Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces,, Journal of Mathematical Analysis and Applications, 157 (1991), 189. Google Scholar 
[1] 
Plamen Stefanov, Yang Yang. Multiwave tomography with reflectors: Landweber's iteration. Inverse Problems & Imaging, 2017, 11 (2) : 373401. doi: 10.3934/ipi.2017018 
[2] 
T. J. Sullivan. Wellposed Bayesian inverse problems and heavytailed stable quasiBanach space priors. Inverse Problems & Imaging, 2017, 11 (5) : 857874. doi: 10.3934/ipi.2017040 
[3] 
Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial & Management Optimization, 2008, 4 (2) : 247270. doi: 10.3934/jimo.2008.4.247 
[4] 
David Maxwell. KozlovMaz'ya iteration as a form of Landweber iteration. Inverse Problems & Imaging, 2014, 8 (2) : 537560. doi: 10.3934/ipi.2014.8.537 
[5] 
Henryk Leszczyński, Monika Wrzosek. Newton's method for nonlinear stochastic wave equations driven by onedimensional Brownian motion. Mathematical Biosciences & Engineering, 2017, 14 (1) : 237248. doi: 10.3934/mbe.2017015 
[6] 
Thorsten Hohage, Mihaela Pricop. Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise. Inverse Problems & Imaging, 2008, 2 (2) : 271290. doi: 10.3934/ipi.2008.2.271 
[7] 
Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Nonlocal regularization of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 511530. doi: 10.3934/ipi.2011.5.511 
[8] 
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689709. doi: 10.3934/ipi.2016017 
[9] 
Bernd Hofmann, Barbara Kaltenbacher, Elena Resmerita. Lavrentiev's regularization method in Hilbert spaces revisited. Inverse Problems & Imaging, 2016, 10 (3) : 741764. doi: 10.3934/ipi.2016019 
[10] 
Armin Lechleiter, Marcel Rennoch. Nonlinear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media. Inverse Problems & Imaging, 2017, 11 (1) : 151176. doi: 10.3934/ipi.2017008 
[11] 
R. Baier, M. Dellnitz, M. Hesselvon Molo, S. Sertl, I. G. Kevrekidis. The computation of convex invariant sets via Newton's method. Journal of Computational Dynamics, 2014, 1 (1) : 3969. doi: 10.3934/jcd.2014.1.39 
[12] 
Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 143153. doi: 10.3934/jimo.2008.4.143 
[13] 
Robert Denk, Leonid Volevich. A new class of parabolic problems connected with Newton's polygon. Conference Publications, 2007, 2007 (Special) : 294303. doi: 10.3934/proc.2007.2007.294 
[14] 
Anatoli Babin, Alexander Figotin. Newton's law for a trajectory of concentration of solutions to nonlinear Schrodinger equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 16851718. doi: 10.3934/cpaa.2014.13.1685 
[15] 
Matthew A. Fury. Regularization for illposed inhomogeneous evolution problems in a Hilbert space. Conference Publications, 2013, 2013 (special) : 259272. doi: 10.3934/proc.2013.2013.259 
[16] 
Irene Benedetti, Nguyen Van Loi, Valentina Taddei. An approximation solvability method for nonlocal semilinear differential problems in Banach spaces. Discrete & Continuous Dynamical Systems  A, 2017, 37 (6) : 29772998. doi: 10.3934/dcds.2017128 
[17] 
Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577586. doi: 10.3934/ipi.2008.2.577 
[18] 
Andy M. Yip, Wei Zhu. A fast modified Newton's method for curvature based denoising of 1D signals. Inverse Problems & Imaging, 2013, 7 (3) : 10751097. doi: 10.3934/ipi.2013.7.1075 
[19] 
Bernadette N. Hahn. Dynamic linear inverse problems with moderate movements of the object: Illposedness and regularization. Inverse Problems & Imaging, 2015, 9 (2) : 395413. doi: 10.3934/ipi.2015.9.395 
[20] 
Bruno Sixou, Cyril Mory. KullbackLeibler residual and regularization for inverse problems with noisy data and noisy operator. Inverse Problems & Imaging, 2019, 13 (5) : 11131137. doi: 10.3934/ipi.2019050 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]