• Previous Article
    Optimal control and stability analysis of an epidemic model with education campaign and treatment
  • PROC Home
  • This Issue
  • Next Article
    Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field
2015, 2015(special): 635-643. doi: 10.3934/proc.2015.0635

An iterative approach to $L^\infty$-boundedness in quasilinear Keller-Segel systems

1. 

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601

Received  September 2014 Revised  February 2015 Published  November 2015

This paper mainly considers the uniform bound on solutions of non-degenerate Keller-Segel systems on the whole space. In the case that the domain is bounded, Tao-Winkler (2012) proved existence of globally bounded solutions of non-degenerate systems. More precisely, they gave the result on boundedness in quasilinear parabolic equations by using the $L^p$-bounds on the solution for some large $p>1$. In Ishida-Yokota (2012), they dealt with the same system as this paper on the whole space, however, their $L^\infty$-estimate possibly grows up even if the solutions have the uniform bounds in $L^p(\mathbb{R}^N)$ for all $p\in[1,\infty)$. The present work asserts the uniform in time $L^\infty$-bound on solutions. Moreover, this paper covers the degenerate Keller-Segel systems and constructs the uniformly bounded weak solutions.
Citation: Sachiko Ishida. An iterative approach to $L^\infty$-boundedness in quasilinear Keller-Segel systems. Conference Publications, 2015, 2015 (special) : 635-643. doi: 10.3934/proc.2015.0635
References:
[1]

T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832. Google Scholar

[2]

T. Cieślak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2,, Acta Appl. Math., 129 (2014), 135. Google Scholar

[3]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633. Google Scholar

[4]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. Google Scholar

[5]

S. Ishida, Y. Maeda and T. Yokota, Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbbR^N$,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2537. Google Scholar

[6]

S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data,, J. Differential Equations, 252 (2012), 2469. Google Scholar

[7]

S. Ishida and T. Yokota, Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems,, Discrete Contin. Dyn. Syst. Supplements, 2013 (2013), 345. Google Scholar

[8]

S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569. Google Scholar

[9]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. Google Scholar

[10]

T. Nagai, Global existence and blowup of solutions to a chemotaxis system,, Nonlinear Anal., 47 (2001), 777. Google Scholar

[11]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkcial. Ekvac., 40 (1997), 411. Google Scholar

[12]

T. Nagai, R. Syukuinn and M. Umesako, Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in $\mathbbR^N$,, Funkcial. Ekvac., 46 (2003), 383. Google Scholar

[13]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations,, Funkcial. Ekvac., 44 (2001), 441. Google Scholar

[14]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,, Mathematical Surveys and Monographs, 49 (1997). Google Scholar

[15]

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term,, J. Differential Equations, 227 (2006), 333. Google Scholar

[16]

Y. Sugiyama and Y. Yahagi, Extinction, decay and blow-up for Keller-Segel systems of fast diffusion type,, J. Differential Equations, 250 (2011), 3047. Google Scholar

[17]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692. Google Scholar

[18]

M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity,, Math. Nachr., 283 (2010), 1664. Google Scholar

[19]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. Google Scholar

[20]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748. Google Scholar

show all references

References:
[1]

T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832. Google Scholar

[2]

T. Cieślak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2,, Acta Appl. Math., 129 (2014), 135. Google Scholar

[3]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633. Google Scholar

[4]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. Google Scholar

[5]

S. Ishida, Y. Maeda and T. Yokota, Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbbR^N$,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2537. Google Scholar

[6]

S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data,, J. Differential Equations, 252 (2012), 2469. Google Scholar

[7]

S. Ishida and T. Yokota, Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems,, Discrete Contin. Dyn. Syst. Supplements, 2013 (2013), 345. Google Scholar

[8]

S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569. Google Scholar

[9]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. Google Scholar

[10]

T. Nagai, Global existence and blowup of solutions to a chemotaxis system,, Nonlinear Anal., 47 (2001), 777. Google Scholar

[11]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkcial. Ekvac., 40 (1997), 411. Google Scholar

[12]

T. Nagai, R. Syukuinn and M. Umesako, Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in $\mathbbR^N$,, Funkcial. Ekvac., 46 (2003), 383. Google Scholar

[13]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations,, Funkcial. Ekvac., 44 (2001), 441. Google Scholar

[14]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,, Mathematical Surveys and Monographs, 49 (1997). Google Scholar

[15]

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term,, J. Differential Equations, 227 (2006), 333. Google Scholar

[16]

Y. Sugiyama and Y. Yahagi, Extinction, decay and blow-up for Keller-Segel systems of fast diffusion type,, J. Differential Equations, 250 (2011), 3047. Google Scholar

[17]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692. Google Scholar

[18]

M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity,, Math. Nachr., 283 (2010), 1664. Google Scholar

[19]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. Google Scholar

[20]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748. Google Scholar

[1]

Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464

[2]

Sachiko Ishida, Tomomi Yokota. Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 211-232. doi: 10.3934/dcdss.2020012

[3]

Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503

[4]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[5]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[6]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[7]

Mengyao Ding, Sining Zheng. $ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2971-2988. doi: 10.3934/dcdsb.2018295

[8]

Mengyao Ding, Xiangdong Zhao. $ L^\sigma $-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5297-5315. doi: 10.3934/dcdsb.2019059

[9]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[10]

Wenting Cong, Jian-Guo Liu. Uniform $L^{∞}$ boundedness for a degenerate parabolic-parabolic Keller-Segel model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 307-338. doi: 10.3934/dcdsb.2017015

[11]

Sachiko Ishida, Tomomi Yokota. Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 345-354. doi: 10.3934/proc.2013.2013.345

[12]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[13]

Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335

[14]

Sachiko Ishida, Yusuke Maeda, Tomomi Yokota. Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2537-2568. doi: 10.3934/dcdsb.2013.18.2537

[15]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic & Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[16]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[17]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 233-255. doi: 10.3934/dcdss.2020013

[18]

Yoshifumi Mimura. Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1603-1630. doi: 10.3934/dcds.2017066

[19]

Qi Wang, Jingyue Yang, Feng Yu. Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5021-5036. doi: 10.3934/dcds.2017216

[20]

Jan Burczak, Rafael Granero-Belinchón. Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 139-164. doi: 10.3934/dcdss.2020008

 Impact Factor: 

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]