# American Institute of Mathematical Sciences

2015, 2015(special): 525-532. doi: 10.3934/proc.2015.0525

## A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems

 1 Departamento de Matemáticas, Universidade da Coruña, Campus de Elviña s/n 15071 A Coruña, Spain 2 Basque Center for Applied Mathematics, Alameda Mazarredo 14, 48009 Bilbao, Spain 3 Department of Computing, Mathematics and Physics, Bergen University College, Bergen, Norway

Received  September 2014 Revised  September 2015 Published  November 2015

We present an augmented dual-mixed variational formulation for a linear convection-diffusion equation with homogeneous Dirichlet boundary conditions. The approach is based on the addition of suitable least squares type terms. We prove that for appropriate values of the stabilization parameters, that depend on the diffusion coefficient and the magnitude of the convective velocity, the new variational formulation and the corresponding Galerkin scheme are well-posed, and a Céa estimate holds. In particular, we derive the rate of convergence when the flux and the concentration are approximated, respectively, by Raviart-Thomas and continuous piecewise polynomials. In addition, we introduce a simple a posteriori error estimator which is reliable and locally efficient. Finally, we provide numerical experiments that illustrate the behavior of the method.
Citation: M. González, J. Jansson, S. Korotov. A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems. Conference Publications, 2015, 2015 (special) : 525-532. doi: 10.3934/proc.2015.0525
##### References:
 [1] T. P. Barrios, J. M. Cascón and M. González, A posteriori error analysis of an augmented mixed finite element method for Darcy flow,, Comput. Methods Appl. Mech. Engrg., 283 (2015), 909. Google Scholar [2] J. Douglas Jr. and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations,, Math. Comp., 44 (1985), 39. Google Scholar [3] A. Ern and A. F. Stephansen, A posterior energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods,, J. Comput. Math., 26 (2008), 488. Google Scholar [4] A. Masud and T. J. R. Hughes, A stabilized mixed finite element method for Darcy flow,, Comput. Methods Appl. Mech. Engrg., 191 (2002), 4341. Google Scholar [5] J. E. Roberts and J. M. Thomas, Mixed and Hybrid Methods, in Handbook of Numerical Analysis,, edited by P.G. Ciarlet and J.L. Lions, (1991). Google Scholar

show all references

##### References:
 [1] T. P. Barrios, J. M. Cascón and M. González, A posteriori error analysis of an augmented mixed finite element method for Darcy flow,, Comput. Methods Appl. Mech. Engrg., 283 (2015), 909. Google Scholar [2] J. Douglas Jr. and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations,, Math. Comp., 44 (1985), 39. Google Scholar [3] A. Ern and A. F. Stephansen, A posterior energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods,, J. Comput. Math., 26 (2008), 488. Google Scholar [4] A. Masud and T. J. R. Hughes, A stabilized mixed finite element method for Darcy flow,, Comput. Methods Appl. Mech. Engrg., 191 (2002), 4341. Google Scholar [5] J. E. Roberts and J. M. Thomas, Mixed and Hybrid Methods, in Handbook of Numerical Analysis,, edited by P.G. Ciarlet and J.L. Lions, (1991). Google Scholar
 [1] Huan-Zhen Chen, Zhao-Jie Zhou, Hong Wang, Hong-Ying Man. An optimal-order error estimate for a family of characteristic-mixed methods to transient convection-diffusion problems. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 325-341. doi: 10.3934/dcdsb.2011.15.325 [2] Jiaping Yu, Haibiao Zheng, Feng Shi, Ren Zhao. Two-grid finite element method for the stabilization of mixed Stokes-Darcy model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 387-402. doi: 10.3934/dcdsb.2018109 [3] Patrick Henning, Mario Ohlberger. A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1393-1420. doi: 10.3934/dcdss.2016056 [4] Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59 [5] Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496 [6] Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641 [7] Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663 [8] Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034 [9] Petr Knobloch. Error estimates for a nonlinear local projection stabilization of transient convection--diffusion--reaction equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 901-911. doi: 10.3934/dcdss.2015.8.901 [10] Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055 [11] Walter Allegretto, Yanping Lin, Ningning Yan. A posteriori error analysis for FEM of American options. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 957-978. doi: 10.3934/dcdsb.2006.6.957 [12] Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure & Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339 [13] Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807 [14] Dominik Hafemeyer, Florian Mannel, Ira Neitzel, Boris Vexler. Finite element error estimates for one-dimensional elliptic optimal control by BV-functions. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019041 [15] Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269 [16] Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017 [17] Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377 [18] Fredrik Hellman, Patrick Henning, Axel Målqvist. Multiscale mixed finite elements. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1269-1298. doi: 10.3934/dcdss.2016051 [19] Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133 [20] Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

Impact Factor: