2015, 2015(special): 495-504. doi: 10.3934/proc.2015.0495

3D reconstruction for partial data electrical impedance tomography using a sparsity prior

1. 

Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

2. 

Danmarks Tekniske Universitet, Department of Applied Mathematics and Computer Science, Matematiktorvet, Building 303 B, DK - 2800 Kgs. Lyngby

Received  September 2014 Revised  August 2015 Published  November 2015

In electrical impedance tomography the electrical conductivity inside a physical body is computed from electro-static boundary measurements. The focus of this paper is to extend recent results for the 2D problem to 3D: prior information about the sparsity and spatial distribution of the conductivity is used to improve reconstructions for the partial data problem with Cauchy data measured only on a subset of the boundary. A sparsity prior is enforced using the $\ell_1$ norm in the penalty term of a Tikhonov functional, and spatial prior information is incorporated by applying a spatially distributed regularization parameter. The optimization problem is solved numerically using a generalized conditional gradient method with soft thresholding. Numerical examples show the effectiveness of the suggested method even for the partial data problem with measurements affected by noise.
Citation: Henrik Garde, Kim Knudsen. 3D reconstruction for partial data electrical impedance tomography using a sparsity prior. Conference Publications, 2015, 2015 (special) : 495-504. doi: 10.3934/proc.2015.0495
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, $2^{nd}$ edition, (2003). Google Scholar

[2]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153. Google Scholar

[3]

T. Bonesky, K. Bredies, D. A. Lorenz and P. Maass, A generalized conditional gradient method for nonlinear operator equations with sparsity constraints,, Inverse Problems, 23 (2007), 2041. Google Scholar

[4]

K. Bredies, D. A. Lorenz and P. Maass, A generalized conditional gradient method and its connection to an iterative shrinkage method,, Comput. Optim. Appl., 42 (2009), 173. Google Scholar

[5]

A. L. Bukhgeim and G. Uhlmann, Recovering a potential from partial Cauchy data,, Comm. Partial Differential Equations, 27 (2002), 653. Google Scholar

[6]

A.-P. Calderón, On an inverse boundary value problem,, in Seminar on Numerical Analysis and its Applications to Continuum Physics, (1980), 65. Google Scholar

[7]

I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,, Comm. Pure Appl. Math., 57 (2004), 1413. Google Scholar

[8]

H. Garde and K. Knudsen, Sparsity prior for electrical impedance tomography with partial data,, Inverse Probl. Sci. Eng., (2015). Google Scholar

[9]

M. Gehre, T. Kluth, A. Lipponen, B. Jin, A. Seppänen, J. P. Kaipio and P. Maass, Sparsity reconstruction in electrical impedance tomography: an experimental evaluation,, J. Comput. Appl. Math., 236 (2012), 2126. Google Scholar

[10]

B. von Harrach and J. K. Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography,, SIAM J. Math. Anal., 42 (2010), 1505. Google Scholar

[11]

B. von Harrach and M. Ullrich, Monotonicity-based shape reconstruction in electrical impedance tomography,, SIAM J. Math. Anal., 45 (2013), 3382. Google Scholar

[12]

H. Heck and J.-N. Wang, Stability estimates for the inverse boundary value problem by partial Cauchy data,, Inverse Problems, 22 (2006), 1787. Google Scholar

[13]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Probl. Imaging, 1 (2007), 95. Google Scholar

[14]

B. Jin, T. Khan and P. Maass, A reconstruction algorithm for electrical impedance tomography based on sparsity regularization,, Internat. J. Numer. Methods Engrg., 89 (2012), 337. Google Scholar

[15]

B. Jin and P. Maass, An analysis of electrical impedance tomography with applications to Tikhonov regularization,, ESAIM: Control, 18 (2012), 1027. Google Scholar

[16]

C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data,, Ann. of Math. (2), 165 (2007), 567. Google Scholar

[17]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008). Google Scholar

[18]

K. Knudsen, The Calderón problem with partial data for less smooth conductivities,, Comm. Partial Differential Equations, 31 (2006), 57. Google Scholar

[19]

A. Logg, K.-A. Mardal and G. N. Wells, Automated Solution of Differential Equations by the Finite Element Method,, Springer, (2012). Google Scholar

[20]

G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus,, Ann. Inst. Fourier (Grenoble), 15 (1965), 189. Google Scholar

[21]

S. J. Wright, R. D. Nowak and M. A. T. Figueiredo, Sparse reconstruction by separable approximation,, IEEE Trans. Signal Process., 57 (2009), 2479. Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, $2^{nd}$ edition, (2003). Google Scholar

[2]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153. Google Scholar

[3]

T. Bonesky, K. Bredies, D. A. Lorenz and P. Maass, A generalized conditional gradient method for nonlinear operator equations with sparsity constraints,, Inverse Problems, 23 (2007), 2041. Google Scholar

[4]

K. Bredies, D. A. Lorenz and P. Maass, A generalized conditional gradient method and its connection to an iterative shrinkage method,, Comput. Optim. Appl., 42 (2009), 173. Google Scholar

[5]

A. L. Bukhgeim and G. Uhlmann, Recovering a potential from partial Cauchy data,, Comm. Partial Differential Equations, 27 (2002), 653. Google Scholar

[6]

A.-P. Calderón, On an inverse boundary value problem,, in Seminar on Numerical Analysis and its Applications to Continuum Physics, (1980), 65. Google Scholar

[7]

I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,, Comm. Pure Appl. Math., 57 (2004), 1413. Google Scholar

[8]

H. Garde and K. Knudsen, Sparsity prior for electrical impedance tomography with partial data,, Inverse Probl. Sci. Eng., (2015). Google Scholar

[9]

M. Gehre, T. Kluth, A. Lipponen, B. Jin, A. Seppänen, J. P. Kaipio and P. Maass, Sparsity reconstruction in electrical impedance tomography: an experimental evaluation,, J. Comput. Appl. Math., 236 (2012), 2126. Google Scholar

[10]

B. von Harrach and J. K. Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography,, SIAM J. Math. Anal., 42 (2010), 1505. Google Scholar

[11]

B. von Harrach and M. Ullrich, Monotonicity-based shape reconstruction in electrical impedance tomography,, SIAM J. Math. Anal., 45 (2013), 3382. Google Scholar

[12]

H. Heck and J.-N. Wang, Stability estimates for the inverse boundary value problem by partial Cauchy data,, Inverse Problems, 22 (2006), 1787. Google Scholar

[13]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Probl. Imaging, 1 (2007), 95. Google Scholar

[14]

B. Jin, T. Khan and P. Maass, A reconstruction algorithm for electrical impedance tomography based on sparsity regularization,, Internat. J. Numer. Methods Engrg., 89 (2012), 337. Google Scholar

[15]

B. Jin and P. Maass, An analysis of electrical impedance tomography with applications to Tikhonov regularization,, ESAIM: Control, 18 (2012), 1027. Google Scholar

[16]

C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data,, Ann. of Math. (2), 165 (2007), 567. Google Scholar

[17]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008). Google Scholar

[18]

K. Knudsen, The Calderón problem with partial data for less smooth conductivities,, Comm. Partial Differential Equations, 31 (2006), 57. Google Scholar

[19]

A. Logg, K.-A. Mardal and G. N. Wells, Automated Solution of Differential Equations by the Finite Element Method,, Springer, (2012). Google Scholar

[20]

G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus,, Ann. Inst. Fourier (Grenoble), 15 (1965), 189. Google Scholar

[21]

S. J. Wright, R. D. Nowak and M. A. T. Figueiredo, Sparse reconstruction by separable approximation,, IEEE Trans. Signal Process., 57 (2009), 2479. Google Scholar

[1]

Melody Alsaker, Sarah Jane Hamilton, Andreas Hauptmann. A direct D-bar method for partial boundary data electrical impedance tomography with a priori information. Inverse Problems & Imaging, 2017, 11 (3) : 427-454. doi: 10.3934/ipi.2017020

[2]

Ville Kolehmainen, Matthias J. Ehrhardt, Simon R. Arridge. Incorporating structural prior information and sparsity into EIT using parallel level sets. Inverse Problems & Imaging, 2019, 13 (2) : 285-307. doi: 10.3934/ipi.2019015

[3]

Jérémi Dardé, Harri Hakula, Nuutti Hyvönen, Stratos Staboulis. Fine-tuning electrode information in electrical impedance tomography. Inverse Problems & Imaging, 2012, 6 (3) : 399-421. doi: 10.3934/ipi.2012.6.399

[4]

Chengxiang Wang, Li Zeng, Yumeng Guo, Lingli Zhang. Wavelet tight frame and prior image-based image reconstruction from limited-angle projection data. Inverse Problems & Imaging, 2017, 11 (6) : 917-948. doi: 10.3934/ipi.2017043

[5]

Yernat M. Assylbekov. Reconstruction in the partial data Calderón problem on admissible manifolds. Inverse Problems & Imaging, 2017, 11 (3) : 455-476. doi: 10.3934/ipi.2017021

[6]

Nuutti Hyvönen, Harri Hakula, Sampsa Pursiainen. Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 299-317. doi: 10.3934/ipi.2007.1.299

[7]

Melody Dodd, Jennifer L. Mueller. A real-time D-bar algorithm for 2-D electrical impedance tomography data. Inverse Problems & Imaging, 2014, 8 (4) : 1013-1031. doi: 10.3934/ipi.2014.8.1013

[8]

Sarah Jane Hamilton, Andreas Hauptmann, Samuli Siltanen. A data-driven edge-preserving D-bar method for electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (4) : 1053-1072. doi: 10.3934/ipi.2014.8.1053

[9]

Fabrice Delbary, Rainer Kress. Electrical impedance tomography using a point electrode inverse scheme for complete electrode data. Inverse Problems & Imaging, 2011, 5 (2) : 355-369. doi: 10.3934/ipi.2011.5.355

[10]

Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 173-197. doi: 10.3934/ipi.2014.8.173

[11]

Bastian Gebauer. Localized potentials in electrical impedance tomography. Inverse Problems & Imaging, 2008, 2 (2) : 251-269. doi: 10.3934/ipi.2008.2.251

[12]

Kari Astala, Jennifer L. Mueller, Lassi Päivärinta, Allan Perämäki, Samuli Siltanen. Direct electrical impedance tomography for nonsmooth conductivities. Inverse Problems & Imaging, 2011, 5 (3) : 531-549. doi: 10.3934/ipi.2011.5.531

[13]

Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems & Imaging, 2013, 7 (1) : 217-242. doi: 10.3934/ipi.2013.7.217

[14]

Subrata Dasgupta. Disentangling data, information and knowledge. Big Data & Information Analytics, 2016, 1 (4) : 377-389. doi: 10.3934/bdia.2016016

[15]

Liliana Borcea, Fernando Guevara Vasquez, Alexander V. Mamonov. Study of noise effects in electrical impedance tomography with resistor networks. Inverse Problems & Imaging, 2013, 7 (2) : 417-443. doi: 10.3934/ipi.2013.7.417

[16]

Dong liu, Ville Kolehmainen, Samuli Siltanen, Anne-maria Laukkanen, Aku Seppänen. Estimation of conductivity changes in a region of interest with electrical impedance tomography. Inverse Problems & Imaging, 2015, 9 (1) : 211-229. doi: 10.3934/ipi.2015.9.211

[17]

Gen Nakamura, Päivi Ronkanen, Samuli Siltanen, Kazumi Tanuma. Recovering conductivity at the boundary in three-dimensional electrical impedance tomography. Inverse Problems & Imaging, 2011, 5 (2) : 485-510. doi: 10.3934/ipi.2011.5.485

[18]

Nicolay M. Tanushev, Luminita Vese. A piecewise-constant binary model for electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 423-435. doi: 10.3934/ipi.2007.1.423

[19]

Nuutti Hyvönen, Lassi Päivärinta, Janne P. Tamminen. Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps. Inverse Problems & Imaging, 2018, 12 (2) : 373-400. doi: 10.3934/ipi.2018017

[20]

Kimmo Karhunen, Aku Seppänen, Jari P. Kaipio. Adaptive meshing approach to identification of cracks with electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (1) : 127-148. doi: 10.3934/ipi.2014.8.127

 Impact Factor: 

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]