2015, 2015(special): 320-329. doi: 10.3934/proc.2015.0320

A note on a weakly coupled system of structurally damped waves

1. 

Departamento de Computação e Matemática, Universidade de São Paulo (USP), FFCLRP, Av. dos Bandeirantes 3900, Ribeirão Preto, SP 14040-901

Received  September 2014 Revised  June 2015 Published  November 2015

In this note, we find the critical exponent for a system of weakly coupled structurally damped waves.
Citation: Marcello D'Abbicco. A note on a weakly coupled system of structurally damped waves. Conference Publications, 2015, 2015 (special) : 320-329. doi: 10.3934/proc.2015.0320
References:
[1]

P. Biler, Time decay of solutions of semilinear strongly damped generalized wave equations,, Math. Methods Appl. Sci. 14 (1991), 14 (1991), 427. Google Scholar

[2]

R. C. Charão, C. R. da Luz and R. Ikehata, Sharp Decay Rates for Wave Equations with a Fractional Damping via New Method in the Fourier Space,, Journal of Math. Anal. and Appl. 408 (2013), 408 (2013), 247. Google Scholar

[3]

A. Córdoba and D. Córdoba, A Maximum Principle Applied to Quasi-Geostrophic Equations,, Commun. Math. Phys. 249 (2004), 249 (2004), 511. Google Scholar

[4]

P. T. Duong, M. Kainane and M. Reissig, Global existence for semi-linear structurally damped $\sigma$-evolution models,, J. Math. Anal. Appl. 431 (2015), 431 (2015), 569. Google Scholar

[5]

M. D'Abbicco, The influence of a nonlinear memory on the damped wave equation,, Nonlinear Analysis, 95 (2014), 130. Google Scholar

[6]

M. D'Abbicco, A wave equation with structural damping and nonlinear memory,, Nonlinear Differential Equations and Applications, 21 (2014), 751. Google Scholar

[7]

M. D'Abbicco, A benefit from the $L^1$ smallness of initial data for the semilinear wave equation with structural damping,, Current Trends in Analysis and its Applications, (2015), 209. Google Scholar

[8]

M. D'Abbicco and M. R. Ebert, Diffusion phenomena for the wave equation with structural damping in the $L^p-L^q$ framework,, J. of Differential Equations, 256 (2014), 2307. Google Scholar

[9]

M. D'Abbicco and M. R. Ebert, An application of $L^p-L^q$ decay estimates to the semilinear wave equation with parabolic-like structural damping,, Nonlinear Analysis, 99 (2014), 16. Google Scholar

[10]

M. D'Abbicco and M. Reissig, Semilinear structural damped waves,, Math. Methods in Appl. Sc., 37 (2014), 1570. Google Scholar

[11]

R. Ikehata and M. Natsume, Energy Decay Estimates for Wave Equations with a Fractional Damping,, Differential and Integral Equations, 25 (2012), 9. Google Scholar

[12]

R. Ikehata, K. Tanizawa, Global existence of solutions for semilinear damped wave equations in $R^N$ with noncompactly supported initial data,, Nonlinear Analysis, 61 (2005), 1189. Google Scholar

[13]

T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations,, Commun. Pure Appl. Math., 33 (1980), 501. Google Scholar

[14]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. RIMS., 12 (1976), 169. Google Scholar

[15]

T. Narazaki and M. Reissig, $L^1$ estimates for oscillating integrals related to structural damped wave models,, Studies in Phase Space Analysis with Applications to PDEs, (2013), 215. Google Scholar

[16]

K. Nishihara, Asymptotic behavior of solutions for a system of semilinear heat equations and the corresponding damped wave system,, Osaka Journal of Mathematics, 49 (2012), 331. Google Scholar

[17]

K. Nishihara and Y. Wakasugi, Critical exponent for the Cauchy problem to the weakly coupled damped wave systems,, Nonlinear Analysis, 108 (2014), 249. Google Scholar

[18]

G. Todorova and B. Yordanov, Critical Exponent for a Nonlinear Wave Equation with Damping,, Journal of Differential Equations, 174 (2001), 464. Google Scholar

[19]

Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case,, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 109. Google Scholar

show all references

References:
[1]

P. Biler, Time decay of solutions of semilinear strongly damped generalized wave equations,, Math. Methods Appl. Sci. 14 (1991), 14 (1991), 427. Google Scholar

[2]

R. C. Charão, C. R. da Luz and R. Ikehata, Sharp Decay Rates for Wave Equations with a Fractional Damping via New Method in the Fourier Space,, Journal of Math. Anal. and Appl. 408 (2013), 408 (2013), 247. Google Scholar

[3]

A. Córdoba and D. Córdoba, A Maximum Principle Applied to Quasi-Geostrophic Equations,, Commun. Math. Phys. 249 (2004), 249 (2004), 511. Google Scholar

[4]

P. T. Duong, M. Kainane and M. Reissig, Global existence for semi-linear structurally damped $\sigma$-evolution models,, J. Math. Anal. Appl. 431 (2015), 431 (2015), 569. Google Scholar

[5]

M. D'Abbicco, The influence of a nonlinear memory on the damped wave equation,, Nonlinear Analysis, 95 (2014), 130. Google Scholar

[6]

M. D'Abbicco, A wave equation with structural damping and nonlinear memory,, Nonlinear Differential Equations and Applications, 21 (2014), 751. Google Scholar

[7]

M. D'Abbicco, A benefit from the $L^1$ smallness of initial data for the semilinear wave equation with structural damping,, Current Trends in Analysis and its Applications, (2015), 209. Google Scholar

[8]

M. D'Abbicco and M. R. Ebert, Diffusion phenomena for the wave equation with structural damping in the $L^p-L^q$ framework,, J. of Differential Equations, 256 (2014), 2307. Google Scholar

[9]

M. D'Abbicco and M. R. Ebert, An application of $L^p-L^q$ decay estimates to the semilinear wave equation with parabolic-like structural damping,, Nonlinear Analysis, 99 (2014), 16. Google Scholar

[10]

M. D'Abbicco and M. Reissig, Semilinear structural damped waves,, Math. Methods in Appl. Sc., 37 (2014), 1570. Google Scholar

[11]

R. Ikehata and M. Natsume, Energy Decay Estimates for Wave Equations with a Fractional Damping,, Differential and Integral Equations, 25 (2012), 9. Google Scholar

[12]

R. Ikehata, K. Tanizawa, Global existence of solutions for semilinear damped wave equations in $R^N$ with noncompactly supported initial data,, Nonlinear Analysis, 61 (2005), 1189. Google Scholar

[13]

T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations,, Commun. Pure Appl. Math., 33 (1980), 501. Google Scholar

[14]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. RIMS., 12 (1976), 169. Google Scholar

[15]

T. Narazaki and M. Reissig, $L^1$ estimates for oscillating integrals related to structural damped wave models,, Studies in Phase Space Analysis with Applications to PDEs, (2013), 215. Google Scholar

[16]

K. Nishihara, Asymptotic behavior of solutions for a system of semilinear heat equations and the corresponding damped wave system,, Osaka Journal of Mathematics, 49 (2012), 331. Google Scholar

[17]

K. Nishihara and Y. Wakasugi, Critical exponent for the Cauchy problem to the weakly coupled damped wave systems,, Nonlinear Analysis, 108 (2014), 249. Google Scholar

[18]

G. Todorova and B. Yordanov, Critical Exponent for a Nonlinear Wave Equation with Damping,, Journal of Differential Equations, 174 (2001), 464. Google Scholar

[19]

Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case,, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 109. Google Scholar

[1]

A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119

[2]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[3]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[4]

Shengfan Zhou, Linshan Wang. Kernel sections for damped non-autonomous wave equations with critical exponent. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 399-412. doi: 10.3934/dcds.2003.9.399

[5]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[6]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[7]

Björn Birnir, Kenneth Nelson. The existence of smooth attractors of damped and driven nonlinear wave equations with critical exponent , s = 5. Conference Publications, 1998, 1998 (Special) : 100-117. doi: 10.3934/proc.1998.1998.100

[8]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[9]

Masahiro Ikeda, Takahisa Inui, Mamoru Okamoto, Yuta Wakasugi. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1967-2008. doi: 10.3934/cpaa.2019090

[10]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[11]

Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357

[12]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[13]

Filippo Dell'Oro. Global attractors for strongly damped wave equations with subcritical-critical nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1015-1027. doi: 10.3934/cpaa.2013.12.1015

[14]

Lorena Bociu, Petronela Radu, Daniel Toundykov. Errata: Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping. Evolution Equations & Control Theory, 2014, 3 (2) : 349-354. doi: 10.3934/eect.2014.3.349

[15]

Lorena Bociu, Petronela Radu, Daniel Toundykov. Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping. Evolution Equations & Control Theory, 2013, 2 (2) : 255-279. doi: 10.3934/eect.2013.2.255

[16]

V. Pata, Sergey Zelik. A remark on the damped wave equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 611-616. doi: 10.3934/cpaa.2006.5.611

[17]

Claudianor O. Alves, M. M. Cavalcanti, Valeria N. Domingos Cavalcanti, Mohammad A. Rammaha, Daniel Toundykov. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 583-608. doi: 10.3934/dcdss.2009.2.583

[18]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[19]

David Russell. Structural parameter optimization of linear elastic systems. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1517-1536. doi: 10.3934/cpaa.2011.10.1517

[20]

Nicoletta Del Buono, Cinzia Elia, Roberto Garrappa, Alessandro Pugliese. Preface: "Structural Dynamical Systems: Computational aspects". Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : i-i. doi: 10.3934/dcdsb.201807i

 Impact Factor: 

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]