# American Institute of Mathematical Sciences

2015, 2015(special): 297-303. doi: 10.3934/proc.2015.0297

## Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape

 1 Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via A. Valerio 12/1, 34127 Trieste 2 Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, Institut des Sciences et Techniques de Valenciennes, F-59313 Valenciennes Cedex 9, France

Received  August 2014 Revised  January 2015 Published  November 2015

We prove existence and uniqueness of classical solutions of the anisotropic prescribed mean curvature problem \begin{equation*} {\rm -div}\left({\nabla u}/{\sqrt{1 + |\nabla u|^2}}\right) = -au + {b}/{\sqrt{1 + |\nabla u|^2}}, \ \text{ in } B, \quad u=0, \ \text{ on } \partial B, \end{equation*} where $a,b>0$ are given parameters and $B$ is a ball in ${\mathbb R}^N$. The solution we find is positive, radially symmetric, radially decreasing and concave. This equation has been proposed as a model of the corneal shape in the recent papers [13,14,15,18,17], where however a linearized version of the equation has been investigated.
Citation: Chiara Corsato, Colette De Coster, Pierpaolo Omari. Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Conference Publications, 2015, 2015 (special) : 297-303. doi: 10.3934/proc.2015.0297
##### References:
 [1] M. Athanassenas, J. Clutterbuck, A capillarity problem for compressible liquids,, Pacific J. Math. 243 (2009), 243 (2009), 213. Google Scholar [2] M. Athanassenas, R. Finn, Compressible fluids in a capillary tube,, Pacific J. Math. 224 (2004), 224 (2004), 201. Google Scholar [3] M. Bergner, The Dirichlet problem for graphs of prescribed anisotropic mean curvature in $\mathbb R^{n+1}$,, Analysis (Munich) 28 (2008), 28 (2008), 149. Google Scholar [4] M. Bergner, On the Dirichlet problem for the prescribed mean curvature equation over general domains,, Differential Geom. Appl. 27 (2009), 27 (2009), 335. Google Scholar [5] D. Bonheure, P. Habets, F. Obersnel, P. Omari, Classical and non-classical solutions of a prescribed curvature equation,, J. Differential Equations 243 (2007), 243 (2007), 208. Google Scholar [6] I. Coelho, C. Corsato, P. Omari, A one-dimensional prescribed curvature equation modeling the corneal shape,, Bound. Value Probl. 2014, 2014 (2014). doi: 10.1186/1687-2770-2014-127. Google Scholar [7] C. Corsato, C. De Coster, P. Omari, The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions,, preprint (2015), (2015). Google Scholar [8] R. Finn, On the equations of capillarity,, J. Math. Fluid Mech. 3 (2001), 3 (2001), 139. Google Scholar [9] R. Finn, Capillarity problems for compressible fluids,, Mem. Differential Equations Math. Phys. 33 (2004), 33 (2004), 47. Google Scholar [10] R. Finn, G. Luli, On the capillary problem for compressible fluids,, J. Math. Fluid Mech. 9 (2007), 9 (2007), 87. Google Scholar [11] T. Marquardt, Remark on the anisotropic prescribed mean curvature equation on arbitrary domains,, Math. Z. 264 (2010), 264 (2010), 507. Google Scholar [12] F. Obersnel, P. Omari, Existence, regularity and boundary behaviour of bounded variation solutions of a one-dimensional capillarity equation,, Discrete Contin. Dyn. Syst. 33 (2013), 33 (2013), 305. Google Scholar [13] W. Okrasiński, L. Pl ociniczak, A nonlinear mathematical model of the corneal shape,, Nonlinear Anal. Real World Appl. 13 (2012), 13 (2012), 1498. Google Scholar [14] W. Okrasiński, L. Pl ociniczak, Bessel function model of corneal topography,, Appl. Math. Comput. 223 (2013), 223 (2013), 436. Google Scholar [15] W. Okrasiński, Ł. Płociniczak, Regularization of an ill-posed problem in corneal topography,, Inverse Probl. Sci. Eng. 21 (2013), 21 (2013), 1090. Google Scholar [16] Ł. Płociniczak, G.W.Griffits, W.E.Schiesser, ODE/PDE analysis of corneal curvature,, Comput. Biol. Med. 53 (2014), 53 (2014), 30. doi: 10.1016/j.compbiomed.2014.07.003. Google Scholar [17] Ł. Płociniczak, W. Okrasiński, Nonlinear parameter identification in a corneal geometry model,, Inverse Probl. Sci. Eng. 23 (2015), 23 (2015), 443. Google Scholar [18] Ł. Płociniczak, W. Okrasiński, J.J. Nieto, O. Domínguez, On a nonlinear boundary value problem modeling corneal shape,, J. Math. Anal. Appl. 414 (2014), 414 (2014), 461. Google Scholar

show all references

##### References:
 [1] M. Athanassenas, J. Clutterbuck, A capillarity problem for compressible liquids,, Pacific J. Math. 243 (2009), 243 (2009), 213. Google Scholar [2] M. Athanassenas, R. Finn, Compressible fluids in a capillary tube,, Pacific J. Math. 224 (2004), 224 (2004), 201. Google Scholar [3] M. Bergner, The Dirichlet problem for graphs of prescribed anisotropic mean curvature in $\mathbb R^{n+1}$,, Analysis (Munich) 28 (2008), 28 (2008), 149. Google Scholar [4] M. Bergner, On the Dirichlet problem for the prescribed mean curvature equation over general domains,, Differential Geom. Appl. 27 (2009), 27 (2009), 335. Google Scholar [5] D. Bonheure, P. Habets, F. Obersnel, P. Omari, Classical and non-classical solutions of a prescribed curvature equation,, J. Differential Equations 243 (2007), 243 (2007), 208. Google Scholar [6] I. Coelho, C. Corsato, P. Omari, A one-dimensional prescribed curvature equation modeling the corneal shape,, Bound. Value Probl. 2014, 2014 (2014). doi: 10.1186/1687-2770-2014-127. Google Scholar [7] C. Corsato, C. De Coster, P. Omari, The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions,, preprint (2015), (2015). Google Scholar [8] R. Finn, On the equations of capillarity,, J. Math. Fluid Mech. 3 (2001), 3 (2001), 139. Google Scholar [9] R. Finn, Capillarity problems for compressible fluids,, Mem. Differential Equations Math. Phys. 33 (2004), 33 (2004), 47. Google Scholar [10] R. Finn, G. Luli, On the capillary problem for compressible fluids,, J. Math. Fluid Mech. 9 (2007), 9 (2007), 87. Google Scholar [11] T. Marquardt, Remark on the anisotropic prescribed mean curvature equation on arbitrary domains,, Math. Z. 264 (2010), 264 (2010), 507. Google Scholar [12] F. Obersnel, P. Omari, Existence, regularity and boundary behaviour of bounded variation solutions of a one-dimensional capillarity equation,, Discrete Contin. Dyn. Syst. 33 (2013), 33 (2013), 305. Google Scholar [13] W. Okrasiński, L. Pl ociniczak, A nonlinear mathematical model of the corneal shape,, Nonlinear Anal. Real World Appl. 13 (2012), 13 (2012), 1498. Google Scholar [14] W. Okrasiński, L. Pl ociniczak, Bessel function model of corneal topography,, Appl. Math. Comput. 223 (2013), 223 (2013), 436. Google Scholar [15] W. Okrasiński, Ł. Płociniczak, Regularization of an ill-posed problem in corneal topography,, Inverse Probl. Sci. Eng. 21 (2013), 21 (2013), 1090. Google Scholar [16] Ł. Płociniczak, G.W.Griffits, W.E.Schiesser, ODE/PDE analysis of corneal curvature,, Comput. Biol. Med. 53 (2014), 53 (2014), 30. doi: 10.1016/j.compbiomed.2014.07.003. Google Scholar [17] Ł. Płociniczak, W. Okrasiński, Nonlinear parameter identification in a corneal geometry model,, Inverse Probl. Sci. Eng. 23 (2015), 23 (2015), 443. Google Scholar [18] Ł. Płociniczak, W. Okrasiński, J.J. Nieto, O. Domínguez, On a nonlinear boundary value problem modeling corneal shape,, J. Math. Anal. Appl. 414 (2014), 414 (2014), 461. Google Scholar
 [1] Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159 [2] Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 [3] Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191 [4] Chiara Corsato, Colette De Coster, Franco Obersnel, Pierpaolo Omari, Alessandro Soranzo. A prescribed anisotropic mean curvature equation modeling the corneal shape: A paradigm of nonlinear analysis. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 213-256. doi: 10.3934/dcdss.2018013 [5] Matthias Bergner, Lars Schäfer. Time-like surfaces of prescribed anisotropic mean curvature in Minkowski space. Conference Publications, 2011, 2011 (Special) : 155-162. doi: 10.3934/proc.2011.2011.155 [6] Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569 [7] Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601 [8] G. Kamberov. Prescribing mean curvature: existence and uniqueness problems. Electronic Research Announcements, 1998, 4: 4-11. [9] Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613 [10] Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033 [11] Julián López-Gómez. Uniqueness of radially symmetric large solutions. Conference Publications, 2007, 2007 (Special) : 677-686. doi: 10.3934/proc.2007.2007.677 [12] Taebeom Kim, Sunčica Čanić, Giovanna Guidoboni. Existence and uniqueness of a solution to a three-dimensional axially symmetric Biot problem arising in modeling blood flow. Communications on Pure & Applied Analysis, 2010, 9 (4) : 839-865. doi: 10.3934/cpaa.2010.9.839 [13] Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213 [14] Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124 [15] Franco Obersnel, Pierpaolo Omari. On a result of C.V. Coffman and W.K. Ziemer about the prescribed mean curvature equation. Conference Publications, 2011, 2011 (Special) : 1138-1147. doi: 10.3934/proc.2011.2011.1138 [16] Ruyun Ma, Man Xu. Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2701-2718. doi: 10.3934/dcdsb.2018271 [17] Elias M. Guio, Ricardo Sa Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure & Applied Analysis, 2005, 4 (3) : 549-568. doi: 10.3934/cpaa.2005.4.549 [18] Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365 [19] Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070 [20] Chunqing Lu. Existence and uniqueness of single spike solution of the carrier-pearson problem. Conference Publications, 2001, 2001 (Special) : 259-264. doi: 10.3934/proc.2001.2001.259

Impact Factor: