2015, 2015(special): 230-238. doi: 10.3934/proc.2015.0230

Branches of positive solutions of subcritical elliptic equations in convex domains

1. 

Department of Mathematics, Harvey Mudd College, Claremont, CA 91711

2. 

Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040-Madrid, Spain

Received  September 2014 Revised  March 2015 Published  November 2015

We provide sufficient conditions for the existence of $L^{\infty}$ a priori estimates for positive solutions to a class of subcritical elliptic equations in bounded $C^2$ convex domains. These sufficient conditions widen the range of nonlinearities for which a priori bounds are known. Using these a priori bounds we prove the existence of positive solutions for a class of problems depending on a parameter
Citation: Alfonso Castro, Rosa Pardo. Branches of positive solutions of subcritical elliptic equations in convex domains. Conference Publications, 2015, 2015 (special) : 230-238. doi: 10.3934/proc.2015.0230
References:
[1]

H. Brezis., Functional analysis, Sobolev spaces and partial differential equations., Universitext. Springer, (2011). Google Scholar

[2]

H. Brézis and R. E. L. Turner, On a class of superlinear elliptic problems., Comm. Partial Differential Equations, 2 (1977), 601. Google Scholar

[3]

A. Castro and R. Pardo, A priori bounds for positive solutions of subcritical elliptic equations., Revista Matemática Complutense, (2015), 715. Google Scholar

[4]

A. Castro and R. Pardo, Branches of positive solutions for subcritical elliptic equations., To appear in Contributions to Nonlinear Elliptic Equations and Systems, (): 87. Google Scholar

[5]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues., J. Functional Analysis, 8 (1971), 321. Google Scholar

[6]

D. G. de Figueiredo, P.-L. Lions, and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations., J. Math. Pures Appl. 9 (1982), 9 (1982), 41. Google Scholar

[7]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations., Comm. Partial Differential Equations, 6 (1981), 883. Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]., Springer-Verlag, (1983). Google Scholar

[9]

O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations., Translated from the Russian by Scripta Technica, (1968). Google Scholar

[10]

R. Nussbaum, Positive solutions of nonlinear elliptic boundary value problems., J. Math. Anal. Appl., 51 (1975), 461. Google Scholar

[11]

S. I. Pohozaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$., Dokl. Akad. Nauk SSSR, 165 (1965), 36. Google Scholar

[12]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems., J. Functional Analysis, 7 (1971), 487. Google Scholar

[13]

R. E. L. Turner, A priori bounds for positive solutions of nonlinear elliptic equations in two variables., Duke Math. J., 41 (1974), 759. Google Scholar

show all references

References:
[1]

H. Brezis., Functional analysis, Sobolev spaces and partial differential equations., Universitext. Springer, (2011). Google Scholar

[2]

H. Brézis and R. E. L. Turner, On a class of superlinear elliptic problems., Comm. Partial Differential Equations, 2 (1977), 601. Google Scholar

[3]

A. Castro and R. Pardo, A priori bounds for positive solutions of subcritical elliptic equations., Revista Matemática Complutense, (2015), 715. Google Scholar

[4]

A. Castro and R. Pardo, Branches of positive solutions for subcritical elliptic equations., To appear in Contributions to Nonlinear Elliptic Equations and Systems, (): 87. Google Scholar

[5]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues., J. Functional Analysis, 8 (1971), 321. Google Scholar

[6]

D. G. de Figueiredo, P.-L. Lions, and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations., J. Math. Pures Appl. 9 (1982), 9 (1982), 41. Google Scholar

[7]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations., Comm. Partial Differential Equations, 6 (1981), 883. Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]., Springer-Verlag, (1983). Google Scholar

[9]

O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations., Translated from the Russian by Scripta Technica, (1968). Google Scholar

[10]

R. Nussbaum, Positive solutions of nonlinear elliptic boundary value problems., J. Math. Anal. Appl., 51 (1975), 461. Google Scholar

[11]

S. I. Pohozaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$., Dokl. Akad. Nauk SSSR, 165 (1965), 36. Google Scholar

[12]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems., J. Functional Analysis, 7 (1971), 487. Google Scholar

[13]

R. E. L. Turner, A priori bounds for positive solutions of nonlinear elliptic equations in two variables., Duke Math. J., 41 (1974), 759. Google Scholar

[1]

Alfonso Castro, Rosa Pardo. A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 783-790. doi: 10.3934/dcdsb.2017038

[2]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[3]

Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235

[4]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

[5]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[6]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[7]

Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

[8]

Lishan Lin. A priori bounds and existence result of positive solutions for fractional Laplacian systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1517-1531. doi: 10.3934/dcds.2019065

[9]

Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201

[10]

Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731

[11]

Guowei Dai, Rushun Tian, Zhitao Zhang. Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger Systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1905-1927. doi: 10.3934/dcdss.2019125

[12]

Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283

[13]

Michael Music. The nonlinear Fourier transform for two-dimensional subcritical potentials. Inverse Problems & Imaging, 2014, 8 (4) : 1151-1167. doi: 10.3934/ipi.2014.8.1151

[14]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[15]

Jingbo Dou, Fangfang Ren, John Villavert. Classification of positive solutions to a Lane-Emden type integral system with negative exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6767-6780. doi: 10.3934/dcds.2016094

[16]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[17]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[18]

Jianguo Huang, Jun Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 145-170. doi: 10.3934/dcdsb.2007.7.145

[19]

Dian Palagachev, Lubomira Softova. A priori estimates and precise regularity for parabolic systems with discontinuous data. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 721-742. doi: 10.3934/dcds.2005.13.721

[20]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

 Impact Factor: 

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]