2015, 2015(special): 94-102. doi: 10.3934/proc.2015.0094

Infinitely many solutions for a perturbed Schrödinger equation

1. 

Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via E. Orabona 4, 70125 Bari, Italy

2. 

Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Campus-via E. Orabona 4, 70125 BARI

3. 

Dipartimento di Matematica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari

Received  September 2014 Revised  August 2015 Published  November 2015

We find multiple solutions for a nonlinear perturbed Schrödinger equation by means of the so--called Bolle's method.
Citation: Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many solutions for a perturbed Schrödinger equation. Conference Publications, 2015, 2015 (special) : 94-102. doi: 10.3934/proc.2015.0094
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.

[2]

A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications,, Trans. Amer. Math. Soc., 267 (1981), 1.

[3]

A. Bahri and P. L. Lions, Morse index of some min-max critical points. I. Applications to multiplicity results,, Comm. Pure Appl. Math., 41 (1988), 1027.

[4]

S. Barile and A. Salvatore, Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains,, Discrete Contin. Dyn. Syst. Supplement 2013, (2013), 41.

[5]

S. Barile and A. Salvatore, Multiplicity results for some perturbed elliptic problems in unbounded domains with non-homogeneous boundary conditions,, Nonlinear Analysis, 110 (2014), 47.

[6]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbbR^N$,, Comm. Partial Differential Equations, 20 (1995), 1725.

[7]

V. Benci and D. Fortunato, Discreteness conditions of the spectrum of Schrödinger operators,, J. Math. Anal. Appl., 64 (1978), 695.

[8]

F. A. Berezin and M. A. Shubin, The Schrödinger Equation,, Mathematics and its Applications, 66 (1991).

[9]

P. Bolle, On the Bolza problem,, J. Differential Equations, 152 (1999), 274.

[10]

P. Bolle, N. Ghoussoub and H. Tehrani, The multiplicity of solutions in non-homogeneous boundary value problems,, Manuscripta Math., 101 (2000), 325.

[11]

A. Candela, G. Palmieri and A. Salvatore, Radial solutions of semilinear elliptic equations with broken symmetry,, Topol. Methods Nonlinear Anal., 27 (2006), 117.

[12]

M. Clapp, Y. Ding and S. Hernández-Linares, Strongly indefinite functionals with perturbed symmetries and multiple solutions of nonsymmetric elliptic systems,, Electron. J. Differential Equations, 100 (2004).

[13]

D. E. Edmunds and W.D. Evans, Spectral Theory and Differential Operators,, Oxford Mathematical Monographs, (1987).

[14]

P. Li and S. T. Yau, On the Schrödinger equation and the eigenvalue problem,, Comm. Math. Phys., 88 (1983), 309.

[15]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations,, Z. Angew. Math. Phys., 43 (1992), 270.

[16]

P. H. Rabinowitz, Multiple critical points of perturbed symmetric functionals,, Trans. Amer. Math. Soc., 272 (1982), 753.

[17]

A. Salvatore, Multiple solutions for perturbed elliptic equations in unbounded domains,, Adv. Nonlinear Stud., 3 (2003), 1.

[18]

A. Salvatore, M. Squassina, Deformation from symmetry for nonhomogeneous Schrödinger equations of higher order on unbounded domains,, Electron. J. Differential Equations, 65 (2003), 1.

[19]

M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems,, Manuscripta Math., 32 (1980), 335.

[20]

M. Struwe, Infinitely many solutions of superlinear boundary value problems with rotational symmetry,, Arch. Math., 36 (1981), 360.

[21]

M. Struwe, Superlinear elliptic boundary value problems with rotational symmetry,, Arch. Math., 39 (1982), 233.

[22]

K. Tanaka, Morse indices at critical points related to the symmetric mountain pass theorem and applications,, Comm. Partial Differential Equations, 14 (1989), 99.

[23]

W. Zou and M. Schechter, Critical Point Theory and Its Applications,, Springer, (2006).

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.

[2]

A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications,, Trans. Amer. Math. Soc., 267 (1981), 1.

[3]

A. Bahri and P. L. Lions, Morse index of some min-max critical points. I. Applications to multiplicity results,, Comm. Pure Appl. Math., 41 (1988), 1027.

[4]

S. Barile and A. Salvatore, Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains,, Discrete Contin. Dyn. Syst. Supplement 2013, (2013), 41.

[5]

S. Barile and A. Salvatore, Multiplicity results for some perturbed elliptic problems in unbounded domains with non-homogeneous boundary conditions,, Nonlinear Analysis, 110 (2014), 47.

[6]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbbR^N$,, Comm. Partial Differential Equations, 20 (1995), 1725.

[7]

V. Benci and D. Fortunato, Discreteness conditions of the spectrum of Schrödinger operators,, J. Math. Anal. Appl., 64 (1978), 695.

[8]

F. A. Berezin and M. A. Shubin, The Schrödinger Equation,, Mathematics and its Applications, 66 (1991).

[9]

P. Bolle, On the Bolza problem,, J. Differential Equations, 152 (1999), 274.

[10]

P. Bolle, N. Ghoussoub and H. Tehrani, The multiplicity of solutions in non-homogeneous boundary value problems,, Manuscripta Math., 101 (2000), 325.

[11]

A. Candela, G. Palmieri and A. Salvatore, Radial solutions of semilinear elliptic equations with broken symmetry,, Topol. Methods Nonlinear Anal., 27 (2006), 117.

[12]

M. Clapp, Y. Ding and S. Hernández-Linares, Strongly indefinite functionals with perturbed symmetries and multiple solutions of nonsymmetric elliptic systems,, Electron. J. Differential Equations, 100 (2004).

[13]

D. E. Edmunds and W.D. Evans, Spectral Theory and Differential Operators,, Oxford Mathematical Monographs, (1987).

[14]

P. Li and S. T. Yau, On the Schrödinger equation and the eigenvalue problem,, Comm. Math. Phys., 88 (1983), 309.

[15]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations,, Z. Angew. Math. Phys., 43 (1992), 270.

[16]

P. H. Rabinowitz, Multiple critical points of perturbed symmetric functionals,, Trans. Amer. Math. Soc., 272 (1982), 753.

[17]

A. Salvatore, Multiple solutions for perturbed elliptic equations in unbounded domains,, Adv. Nonlinear Stud., 3 (2003), 1.

[18]

A. Salvatore, M. Squassina, Deformation from symmetry for nonhomogeneous Schrödinger equations of higher order on unbounded domains,, Electron. J. Differential Equations, 65 (2003), 1.

[19]

M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems,, Manuscripta Math., 32 (1980), 335.

[20]

M. Struwe, Infinitely many solutions of superlinear boundary value problems with rotational symmetry,, Arch. Math., 36 (1981), 360.

[21]

M. Struwe, Superlinear elliptic boundary value problems with rotational symmetry,, Arch. Math., 39 (1982), 233.

[22]

K. Tanaka, Morse indices at critical points related to the symmetric mountain pass theorem and applications,, Comm. Partial Differential Equations, 14 (1989), 99.

[23]

W. Zou and M. Schechter, Critical Point Theory and Its Applications,, Springer, (2006).

[1]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[2]

Sara Barile, Addolorata Salvatore. Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Conference Publications, 2013, 2013 (special) : 41-49. doi: 10.3934/proc.2013.2013.41

[3]

S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593

[4]

Jie Liu, Jianguo Si. Invariant tori of a nonlinear Schrödinger equation with quasi-periodically unbounded perturbations. Communications on Pure & Applied Analysis, 2017, 16 (1) : 25-68. doi: 10.3934/cpaa.2017002

[5]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[6]

Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177

[7]

Hector D. Ceniceros. A semi-implicit moving mesh method for the focusing nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2002, 1 (1) : 1-18. doi: 10.3934/cpaa.2002.1.1

[8]

J. Colliander, M. Keel, Gigliola Staffilani, H. Takaoka, T. Tao. Resonant decompositions and the $I$-method for the cubic nonlinear Schrödinger equation on $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 665-686. doi: 10.3934/dcds.2008.21.665

[9]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[10]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[11]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[12]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[13]

Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066

[14]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

[15]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[16]

Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505

[17]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[18]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[19]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[20]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

 Impact Factor: 

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (1)

[Back to Top]