2013, 2013(special): 335-344. doi: 10.3934/proc.2013.2013.335

$L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems

1. 

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Received  August 2012 Revised  November 2012 Published  November 2013

This paper deals with quasilinear degenerate Keller-Segel systems of parabolic-elliptic type. In this type, Sugiyama-Kunii [10] established the $L^r$-decay ($1\leq r<\infty$) of solutions with small initial data when $q\geq m+\frac{2}{N}$ ($m$ denotes the intensity of diffusion and $q$ denotes the nonlinearity). However, the $L^\infty$-decay property was not obtained yet. This paper gives the $L^\infty$-decay property in the super-critical case with small initial data.
Citation: Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335
References:
[1]

H. Amann, "Linear and Quasi-linear Parabolic Problems, Volume I, Abstract Linear Theory'',, Birkhäuser, (1995). Google Scholar

[2]

S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, J. Differential Equations, 252 (2012), 1421. Google Scholar

[3]

S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data,, J. Differential Equations 252 (2012), 252 (2012), 2469. Google Scholar

[4]

S. Ishida, T. Yokota, Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems,, submitted., (). Google Scholar

[5]

T. Kawanago, Existence and behavior of solutions for $u_t=\Delta(u^m)+u^l$,, Adv. Math. Sci. Appl. 7 (1997), 7 (1997), 367. Google Scholar

[6]

E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol. 26 (1970), 26 (1970), 399. Google Scholar

[7]

S. Luckhaus, Y. Sugiyama, Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems,, M2AN Math. Model. Numer. Anal. 40 (2006), 40 (2006), 597. Google Scholar

[8]

S. Luckhaus, Y. Sugiyama, Asymptotic profile with the optimal convergence rate for a parabolic equation of chemotaxis in super-critical cases,, Indiana Univ. Math. J. 56 (2007), 56 (2007), 1279. Google Scholar

[9]

Y. Sugiyama, Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis,, Differential Integral Equations 20 (2007), 20 (2007), 133. Google Scholar

[10]

Y. Sugiyama, H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term,, J. Differential Equations 227 (2006), 227 (2006), 333. Google Scholar

[11]

R. Suzuki, Existence and nonexistence of global solutions to quasilinear parabolic equations with convection,, Hokkaido Mathematical Journal 27 (1998), 27 (1998), 147. Google Scholar

show all references

References:
[1]

H. Amann, "Linear and Quasi-linear Parabolic Problems, Volume I, Abstract Linear Theory'',, Birkhäuser, (1995). Google Scholar

[2]

S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, J. Differential Equations, 252 (2012), 1421. Google Scholar

[3]

S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data,, J. Differential Equations 252 (2012), 252 (2012), 2469. Google Scholar

[4]

S. Ishida, T. Yokota, Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems,, submitted., (). Google Scholar

[5]

T. Kawanago, Existence and behavior of solutions for $u_t=\Delta(u^m)+u^l$,, Adv. Math. Sci. Appl. 7 (1997), 7 (1997), 367. Google Scholar

[6]

E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol. 26 (1970), 26 (1970), 399. Google Scholar

[7]

S. Luckhaus, Y. Sugiyama, Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems,, M2AN Math. Model. Numer. Anal. 40 (2006), 40 (2006), 597. Google Scholar

[8]

S. Luckhaus, Y. Sugiyama, Asymptotic profile with the optimal convergence rate for a parabolic equation of chemotaxis in super-critical cases,, Indiana Univ. Math. J. 56 (2007), 56 (2007), 1279. Google Scholar

[9]

Y. Sugiyama, Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis,, Differential Integral Equations 20 (2007), 20 (2007), 133. Google Scholar

[10]

Y. Sugiyama, H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term,, J. Differential Equations 227 (2006), 227 (2006), 333. Google Scholar

[11]

R. Suzuki, Existence and nonexistence of global solutions to quasilinear parabolic equations with convection,, Hokkaido Mathematical Journal 27 (1998), 27 (1998), 147. Google Scholar

[1]

Sachiko Ishida. An iterative approach to $L^\infty$-boundedness in quasilinear Keller-Segel systems. Conference Publications, 2015, 2015 (special) : 635-643. doi: 10.3934/proc.2015.0635

[2]

Mengyao Ding, Sining Zheng. $ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2971-2988. doi: 10.3934/dcdsb.2018295

[3]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[4]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 233-255. doi: 10.3934/dcdss.2020013

[5]

Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 119-137. doi: 10.3934/dcdss.2020007

[6]

Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029

[7]

Wenting Cong, Jian-Guo Liu. Uniform $L^{∞}$ boundedness for a degenerate parabolic-parabolic Keller-Segel model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 307-338. doi: 10.3934/dcdsb.2017015

[8]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[9]

Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061

[10]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic & Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[11]

Sachiko Ishida, Tomomi Yokota. Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 345-354. doi: 10.3934/proc.2013.2013.345

[12]

Sachiko Ishida, Yusuke Maeda, Tomomi Yokota. Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2537-2568. doi: 10.3934/dcdsb.2013.18.2537

[13]

Mengyao Ding, Xiangdong Zhao. $ L^\sigma $-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5297-5315. doi: 10.3934/dcdsb.2019059

[14]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[15]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[16]

Yoshifumi Mimura. Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1603-1630. doi: 10.3934/dcds.2017066

[17]

Monica Marras, Stella Vernier Piro, Giuseppe Viglialoro. Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Conference Publications, 2015, 2015 (special) : 809-816. doi: 10.3934/proc.2015.0809

[18]

Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464

[19]

Piotr Biler, Ignacio Guerra, Grzegorz Karch. Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2117-2126. doi: 10.3934/cpaa.2015.14.2117

[20]

Sachiko Ishida, Tomomi Yokota. Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 211-232. doi: 10.3934/dcdss.2020012

 Impact Factor: 

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]