
Previous Article
On the local solvability of Darboux's equation
 PROC Home
 This Issue

Next Article
Sampling  reconstruction procedure with jitter of markov continuous processes formed by stochastic differential equations of the first order
A dualPetrovGalerkin method for extended fifthorder Kortewegde Vries type equations
1.  Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, United States, United States, United States 
[1] 
JuanMing Yuan, Jiahong Wu. A dualPetrovGalerkin method for two integrable fifthorder KdV type equations. Discrete & Continuous Dynamical Systems  A, 2010, 26 (4) : 15251536. doi: 10.3934/dcds.2010.26.1525 
[2] 
Marina Chugunova, Dmitry Pelinovsky. Twopulse solutions in the fifthorder KdV equation: Rigorous theory and numerical approximations. Discrete & Continuous Dynamical Systems  B, 2007, 8 (4) : 773800. doi: 10.3934/dcdsb.2007.8.773 
[3] 
Yingte Sun, Xiaoping Yuan. Quasiperiodic solution of quasilinear fifthorder KdV equation. Discrete & Continuous Dynamical Systems  A, 2018, 38 (12) : 62416285. doi: 10.3934/dcds.2018268 
[4] 
Torsten Keßler, Sergej Rjasanow. Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 507549. doi: 10.3934/krm.2019021 
[5] 
Jie Shen, LiLian Wang. Laguerre and composite LegendreLaguerre DualPetrovGalerkin methods for thirdorder equations. Discrete & Continuous Dynamical Systems  B, 2006, 6 (6) : 13811402. doi: 10.3934/dcdsb.2006.6.1381 
[6] 
Jibin Li, Yi Zhang. Exact solitary wave and quasiperiodic wave solutions for four fifthorder nonlinear wave equations. Discrete & Continuous Dynamical Systems  B, 2010, 13 (3) : 623631. doi: 10.3934/dcdsb.2010.13.623 
[7] 
Esther S. Daus, Shi Jin, Liu Liu. Spectral convergence of the stochastic galerkin approximation to the boltzmann equation with multiple scales and large random perturbation in the collision kernel. Kinetic & Related Models, 2019, 12 (4) : 909922. doi: 10.3934/krm.2019034 
[8] 
Pedro Isaza, Juan López, Jorge Mejía. Cauchy problem for the fifth order KadomtsevPetviashvili (KPII) equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 887905. doi: 10.3934/cpaa.2006.5.887 
[9] 
Jerry L. Bona, Didier Pilod. Stability of solitarywave solutions to the HirotaSatsuma equation. Discrete & Continuous Dynamical Systems  A, 2010, 27 (4) : 13911413. doi: 10.3934/dcds.2010.27.1391 
[10] 
Márcio Cavalcante, Chulkwang Kwak. Local wellposedness of the fifthorder KdVtype equations on the halfline. Communications on Pure & Applied Analysis, 2019, 18 (5) : 26072661. doi: 10.3934/cpaa.2019117 
[11] 
Hisashi Okamoto, Takashi Sakajo, Marcus Wunsch. Steadystates and travelingwave solutions of the generalized ConstantinLaxMajda equation. Discrete & Continuous Dynamical Systems  A, 2014, 34 (8) : 31553170. doi: 10.3934/dcds.2014.34.3155 
[12] 
Út V. Lê. ContractionGalerkin method for a semilinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141160. doi: 10.3934/cpaa.2010.9.141 
[13] 
JuanMing Yuan, Jiahong Wu. The complex KdV equation with or without dissipation. Discrete & Continuous Dynamical Systems  B, 2005, 5 (2) : 489512. doi: 10.3934/dcdsb.2005.5.489 
[14] 
Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 11391156. doi: 10.3934/krm.2018044 
[15] 
Yiren Chen, Zhengrong Liu. The bifurcations of solitary and kink waves described by the Gardner equation. Discrete & Continuous Dynamical Systems  S, 2016, 9 (6) : 16291645. doi: 10.3934/dcdss.2016067 
[16] 
H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete & Continuous Dynamical Systems  A, 2004, 10 (3) : 709717. doi: 10.3934/dcds.2004.10.709 
[17] 
Lingbing He, Yulong Zhou. High order approximation for the Boltzmann equation without angular cutoff. Kinetic & Related Models, 2018, 11 (3) : 547596. doi: 10.3934/krm.2018024 
[18] 
Rowan Killip, Soonsik Kwon, Shuanglin Shao, Monica Visan. On the masscritical generalized KdV equation. Discrete & Continuous Dynamical Systems  A, 2012, 32 (1) : 191221. doi: 10.3934/dcds.2012.32.191 
[19] 
Annie Millet, Svetlana Roudenko. Generalized KdV equation subject to a stochastic perturbation. Discrete & Continuous Dynamical Systems  B, 2018, 23 (3) : 11771198. doi: 10.3934/dcdsb.2018147 
[20] 
S. Raynor, G. Staffilani. Low regularity stability of solitons for the KDV equation. Communications on Pure & Applied Analysis, 2003, 2 (3) : 277296. doi: 10.3934/cpaa.2003.2.277 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]