March  2018, 13(1): 177-190. doi: 10.3934/nhm.2018008

Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions

Department of Mathematics, Technische Universität Darmstadt, Dolivostraße 15, 64293 Darmstadt, Germany

Received  April 2017 Revised  September 2017 Published  March 2018

This paper is concerned with a set of novel coupling conditions for the 3× 3 one-dimensional Euler system with source terms at a junction of pipes with possibly different cross-sectional areas. Beside conservation of mass, we require the equality of the total enthalpy at the junction and that the specific entropy for pipes with outgoing flow equals the convex combination of all entropies that belong to pipes with incoming flow. Previously used coupling conditions include equality of pressure or dynamic pressure. They are restricted to the special case of a junction having only one pipe with outgoing flow direction. Recently, Reigstad [SIAM J. Appl. Math., 75:679-702,2015] showed that such pressure-based coupling conditions can produce non-physical solutions for isothermal flows through the production of mechanical energy. Our new coupling conditions ensure energy as well as entropy conservation and also apply to junctions connecting an arbitrary number of pipes with flexible flow directions. We prove the existence and uniqueness of solutions to the generalised Riemann problem at a junction in the neighbourhood of constant stationary states which belong to the subsonic region. This provides the basis for the well-posedness of the homogeneous and inhomogeneous Cauchy problems for initial data with sufficiently small total variation.

Citation: Jens Lang, Pascal Mindt. Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks & Heterogeneous Media, 2018, 13 (1) : 177-190. doi: 10.3934/nhm.2018008
References:
[1]

M. K. BandaM. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56. doi: 10.3934/nhm.2006.1.41. Google Scholar

[2]

M. K. BandaM. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314. doi: 10.3934/nhm.2006.1.295. Google Scholar

[3]

A. Bressan, Hyberbolic Systems of Conservation Laws: The One-dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and Its Application, Oxford University Press, 2000. Google Scholar

[4]

C. ChalonsP. A. Raviart and N. Seguin, The interface coupling of the gas dynamics equations, Quaterly Appl. Math., 66 (2008), 659-705. doi: 10.1090/S0033-569X-08-01087-X. Google Scholar

[5]

R. M. Colombo and M. Garavello, A well posed Riemann problem for the p-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511. doi: 10.3934/nhm.2006.1.495. Google Scholar

[6]

R. M. Colombo and G. Guerra, Hyperbolic balance laws with a non local source, Commun. Partial Differential Equations, 32 (2007), 1917-1939. doi: 10.1080/03605300701318849. Google Scholar

[7]

R. M. Colombo and G. Guerra, Hyperbolic balance laws with a dissipative non local source, Commun. Pure Appl. Anal., 7 (2008), 1077-1090. doi: 10.3934/cpaa.2008.7.1077. Google Scholar

[8]

R. M. ColomboG. GuerraM. Herty and V. Schleper, Optimal control in networks and pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050. doi: 10.1137/080716372. Google Scholar

[9]

R. M. Colombo and F. Marcellini, Coupling conditions for the 3× 3 Euler system, Netw. Heterog. Media, 5 (2009), 675-690. doi: 10.3934/nhm.2010.5.675. Google Scholar

[10]

R. M. Colombo and C. Mauri, Euler systems for compressible fluids at a junction, J. Hyperbol. Differ. Eq., 5 (2008), 547-568. doi: 10.1142/S0219891608001593. Google Scholar

[11]

C. Donadello and A. Marson, Stability of front tracking solutions to the initial and boundary value problem for systems of conservation laws, Nonlinear Differ. Equ. Appl., 14 (2007), 569-592. doi: 10.1007/s00030-007-5010-7. Google Scholar

[12]

I. Gasser and M. Kraft, Modelling and simulation of fires in tunnel networks, Netw. Heterog. Media, 3 (2008), 691-707. doi: 10.3934/nhm.2008.3.691. Google Scholar

[13]

M. Herty, Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612. doi: 10.1137/070688535. Google Scholar

[14]

R. J. LeVeque, Finite-Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002. Google Scholar

[15]

A. Morin and G. A. Reigstad, Pipe networks: Coupling constants in a junction for the isentropic euler equations, Energy Procedia, 64 (2015), 140-149. doi: 10.1016/j.egypro.2015.01.017. Google Scholar

[16]

G. A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, Netw. Heterog. Media, 9 (2014), 65-95. doi: 10.3934/nhm.2014.9.65. Google Scholar

[17]

G. A. Reigstad, Existence and uniqueness of solutions to the generalized Riemann problem for isentropic flow, SIAM J. Appl. Math., 75 (2015), 679-702. doi: 10.1137/140962759. Google Scholar

[18]

G. A. ReigstadT. FlåttenN. E. Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbol. Differ. Eq., 12 (2015), 37-59. doi: 10.1142/S0219891615500022. Google Scholar

[19]

M. SchmidtM. C. Steinbach and B. M. Willert, High detail stationary optimization models for gas networks, Optim. Eng., 16 (2015), 131-164. doi: 10.1007/s11081-014-9246-x. Google Scholar

[20]

T. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer, 2009. Google Scholar

show all references

References:
[1]

M. K. BandaM. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56. doi: 10.3934/nhm.2006.1.41. Google Scholar

[2]

M. K. BandaM. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314. doi: 10.3934/nhm.2006.1.295. Google Scholar

[3]

A. Bressan, Hyberbolic Systems of Conservation Laws: The One-dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and Its Application, Oxford University Press, 2000. Google Scholar

[4]

C. ChalonsP. A. Raviart and N. Seguin, The interface coupling of the gas dynamics equations, Quaterly Appl. Math., 66 (2008), 659-705. doi: 10.1090/S0033-569X-08-01087-X. Google Scholar

[5]

R. M. Colombo and M. Garavello, A well posed Riemann problem for the p-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511. doi: 10.3934/nhm.2006.1.495. Google Scholar

[6]

R. M. Colombo and G. Guerra, Hyperbolic balance laws with a non local source, Commun. Partial Differential Equations, 32 (2007), 1917-1939. doi: 10.1080/03605300701318849. Google Scholar

[7]

R. M. Colombo and G. Guerra, Hyperbolic balance laws with a dissipative non local source, Commun. Pure Appl. Anal., 7 (2008), 1077-1090. doi: 10.3934/cpaa.2008.7.1077. Google Scholar

[8]

R. M. ColomboG. GuerraM. Herty and V. Schleper, Optimal control in networks and pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050. doi: 10.1137/080716372. Google Scholar

[9]

R. M. Colombo and F. Marcellini, Coupling conditions for the 3× 3 Euler system, Netw. Heterog. Media, 5 (2009), 675-690. doi: 10.3934/nhm.2010.5.675. Google Scholar

[10]

R. M. Colombo and C. Mauri, Euler systems for compressible fluids at a junction, J. Hyperbol. Differ. Eq., 5 (2008), 547-568. doi: 10.1142/S0219891608001593. Google Scholar

[11]

C. Donadello and A. Marson, Stability of front tracking solutions to the initial and boundary value problem for systems of conservation laws, Nonlinear Differ. Equ. Appl., 14 (2007), 569-592. doi: 10.1007/s00030-007-5010-7. Google Scholar

[12]

I. Gasser and M. Kraft, Modelling and simulation of fires in tunnel networks, Netw. Heterog. Media, 3 (2008), 691-707. doi: 10.3934/nhm.2008.3.691. Google Scholar

[13]

M. Herty, Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612. doi: 10.1137/070688535. Google Scholar

[14]

R. J. LeVeque, Finite-Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002. Google Scholar

[15]

A. Morin and G. A. Reigstad, Pipe networks: Coupling constants in a junction for the isentropic euler equations, Energy Procedia, 64 (2015), 140-149. doi: 10.1016/j.egypro.2015.01.017. Google Scholar

[16]

G. A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, Netw. Heterog. Media, 9 (2014), 65-95. doi: 10.3934/nhm.2014.9.65. Google Scholar

[17]

G. A. Reigstad, Existence and uniqueness of solutions to the generalized Riemann problem for isentropic flow, SIAM J. Appl. Math., 75 (2015), 679-702. doi: 10.1137/140962759. Google Scholar

[18]

G. A. ReigstadT. FlåttenN. E. Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbol. Differ. Eq., 12 (2015), 37-59. doi: 10.1142/S0219891615500022. Google Scholar

[19]

M. SchmidtM. C. Steinbach and B. M. Willert, High detail stationary optimization models for gas networks, Optim. Eng., 16 (2015), 131-164. doi: 10.1007/s11081-014-9246-x. Google Scholar

[20]

T. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer, 2009. Google Scholar

Figure 1.  Possible wave patterns in the solution of Riemann problems for the Euler equations: shock (S), contact (C) and rarefaction (R).
Figure 2.  Connection of the regions $L$, $L\ast$, $R\ast$, and $R$ with the Lax curve $\mathcal{L}_3$ for incoming pipes (a) and the Lax curves $\mathcal{L}_2\!\circ\!\mathcal{L}_3$ for outgoing pipes (b).
[1]

Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations. Networks & Heterogeneous Media, 2006, 1 (2) : 295-314. doi: 10.3934/nhm.2006.1.295

[2]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[3]

Haigang Li, Jiguang Bao. Euler-Poisson equations related to general compressible rotating fluids. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1085-1096. doi: 10.3934/dcds.2011.29.1085

[4]

Paola Goatin, Philippe G. LeFloch. $L^1$ continuous dependence for the Euler equations of compressible fluids dynamics. Communications on Pure & Applied Analysis, 2003, 2 (1) : 107-137. doi: 10.3934/cpaa.2003.2.107

[5]

Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644

[6]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

[7]

Rinaldo M. Colombo, Francesca Marcellini. Coupling conditions for the $3\times 3$ Euler system. Networks & Heterogeneous Media, 2010, 5 (4) : 675-690. doi: 10.3934/nhm.2010.5.675

[8]

Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang. Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks & Heterogeneous Media, 2015, 10 (4) : 749-785. doi: 10.3934/nhm.2015.10.749

[9]

C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477-481. doi: 10.3934/proc.2003.2003.477

[10]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[11]

Young-Pil Choi. Compressible Euler equations interacting with incompressible flow. Kinetic & Related Models, 2015, 8 (2) : 335-358. doi: 10.3934/krm.2015.8.335

[12]

Shuxing Chen, Gui-Qiang Chen, Zejun Wang, Dehua Wang. A multidimensional piston problem for the Euler equations for compressible flow. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 361-383. doi: 10.3934/dcds.2005.13.361

[13]

Qing Chen, Zhong Tan. Time decay of solutions to the compressible Euler equations with damping. Kinetic & Related Models, 2014, 7 (4) : 605-619. doi: 10.3934/krm.2014.7.605

[14]

Jianwei Yang, Ruxu Lian, Shu Wang. Incompressible type euler as scaling limit of compressible Euler-Maxwell equations. Communications on Pure & Applied Analysis, 2013, 12 (1) : 503-518. doi: 10.3934/cpaa.2013.12.503

[15]

Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : ⅰ-ⅲ. doi: 10.3934/dcdss.201805i

[16]

Marianna Euler, Norbert Euler. Integrating factors and conservation laws for some Camassa-Holm type equations. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1421-1430. doi: 10.3934/cpaa.2012.11.1421

[17]

Stephen Anco, Maria Rosa, Maria Luz Gandarias. Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 607-615. doi: 10.3934/dcdss.2018035

[18]

Werner Bauer, François Gay-Balmaz. Towards a geometric variational discretization of compressible fluids: The rotating shallow water equations. Journal of Computational Dynamics, 2018, 0 (0) : 1-37. doi: 10.3934/jcd.2019001

[19]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[20]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (40)
  • HTML views (176)
  • Cited by (0)

Other articles
by authors

[Back to Top]