September  2017, 12(3): 371-380. doi: 10.3934/nhm.2017016

Coupling conditions for the transition from supersonic to subsonic fluid states

1. 

Lehrstuhl für Angewandte Mathematik 2, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 11, D-91058 Erlangen Germany

2. 

Institut für Geometrie und Praktische Mathematik, RWTH Aachen University, Templergraben 55, D-52064 Aachen, Germany

* Corresponding author: Michael Herty

Received  May 2016 Revised  July 2017 Published  September 2017

Fund Project: The first author is supported by the DFG Collaborative Research Centre SFB-TR-154, C03. The second author is supported by NSF RNMS grant No. 1107444, DFG HE5386/13, 14, 15-1 and the DAAD{MIUR project.The third author is supported by the DFG Collaborative Research Center SFB-TR-40, TP A1

We discuss coupling conditions for the p-system in case of a transition from supersonic states to subsonic states. A single junction with adjacent pipes is considered where on each pipe the gas flow is governed by a general p-system. By extending the notion of demand and supply known from traffic flow analysis we obtain a constructive existence result of solutions compatible with the introduced conditions.

Citation: Martin Gugat, Michael Herty, Siegfried Müller. Coupling conditions for the transition from supersonic to subsonic fluid states. Networks & Heterogeneous Media, 2017, 12 (3) : 371-380. doi: 10.3934/nhm.2017016
References:
[1]

M. K. BandaM. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314 (electronic). doi: 10.3934/nhm.2006.1.295. Google Scholar

[2]

M. K. BandaM. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56. doi: 10.3934/nhm.2006.1.41. Google Scholar

[3]

A. Bressan, Hyperbolic Systems of Conservation Laws, The One-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000. Google Scholar

[4]

A. BressanS. CanicM. GaravelloM. Herty and B. Piccoli, Flow on networks: recent results and perspectives, European Mathematical Society-Surveys in Mathematical Sciences, 1 (2014), 47-111. doi: 10.4171/EMSS/2. Google Scholar

[5]

G.-Q. Chen and D. Wang, The Cauchy problem for the Euler equations for compressible fluids, Handbook of Mathematical Fluid Dynamics, 1 (2002), 421-543. doi: 10.1016/S1874-5792(02)80012-X. Google Scholar

[6]

G. M. CocliteM. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886 (electronic). doi: 10.1137/S0036141004402683. Google Scholar

[7]

R. M. ColomboG. GuerraM. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050. doi: 10.1137/080716372. Google Scholar

[8]

R. M. Colombo and M. Garavello, A well posed Riemann problem for the p-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511. doi: 10.3934/nhm.2006.1.495. Google Scholar

[9]

R. M. Colombo and M. Garavello, On the Cauchy problem for the p-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471. doi: 10.1137/060665841. Google Scholar

[10]

R. M. ColomboM. Herty and V. Sachers, On 2×2 conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622. doi: 10.1137/070690298. Google Scholar

[11]

A. de Saint-Venant, Thèorie du mouvement non-permanent des eaux, avec application aux crues des rivière at à l'introduction des marèes dans leur lit., C.R. Acad. Sci. Paris, 73 (1871), 147-154. Google Scholar

[12]

M. Garavello and B. Piccoli, Traffic Flow on Networks, vol. 1 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006, Conservation laws models. Google Scholar

[13]

E. Godlewski and P. -A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, 118, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-0713-9. Google Scholar

[14]

M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow, SIAM J. Math. Anal., 38 (2006), 595-616. doi: 10.1137/05062617X. Google Scholar

[15]

M. Herty and M. Seaïd, Assessment of coupling conditions in water way intersections, Internat. J. Numer. Methods Fluids, 71 (2013), 1438-1460. doi: 10.1002/fld.3719. Google Scholar

[16]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017. doi: 10.1137/S0036141093243289. Google Scholar

[17]

H. Holden and N. H. Risebro, Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497-515 (electronic). doi: 10.1137/S0036141097327033. Google Scholar

[18]

S. Joana, M. Joris and T. Evangelos, Technical and Economical Characteristics of Co2 Transmission Pipeline Infrastructure, Technical report, JRC Scientic and Technical Reports, European Commission.Google Scholar

[19]

J.-P. Lebacque, Les modeles macroscopiques du traffic, Annales des Ponts., 67 (1993), 24-45. Google Scholar

[20]

F. Murzyn and H. Chanson, Experimental assessment of scale effects affecting two-phase flow properties in hydraulic jumps, Experiments in Fluids, 45 (2008), 513-521. doi: 10.1007/s00348-008-0494-4. Google Scholar

[21]

A. Osiadacz, Simulation of transient flow in gas networks, Int. Journal for Numerical Methods in Fluid Dynamics, 4 (1984), 13-23. doi: 10.1002/fld.1650040103. Google Scholar

[22]

B. Sultanian, Fluid Mechanics: An Intermediate Approach, CRC Press, 2015.Google Scholar

[23]

R. Ugarelli and V. D. Federico, Transition from supercritical to subcritical regime in free surface flow of yield stress fluids Geophys. Res. Lett. , 34 (2007), L21402. doi: 10.1029/2007GL031487. Google Scholar

show all references

References:
[1]

M. K. BandaM. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314 (electronic). doi: 10.3934/nhm.2006.1.295. Google Scholar

[2]

M. K. BandaM. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56. doi: 10.3934/nhm.2006.1.41. Google Scholar

[3]

A. Bressan, Hyperbolic Systems of Conservation Laws, The One-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000. Google Scholar

[4]

A. BressanS. CanicM. GaravelloM. Herty and B. Piccoli, Flow on networks: recent results and perspectives, European Mathematical Society-Surveys in Mathematical Sciences, 1 (2014), 47-111. doi: 10.4171/EMSS/2. Google Scholar

[5]

G.-Q. Chen and D. Wang, The Cauchy problem for the Euler equations for compressible fluids, Handbook of Mathematical Fluid Dynamics, 1 (2002), 421-543. doi: 10.1016/S1874-5792(02)80012-X. Google Scholar

[6]

G. M. CocliteM. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886 (electronic). doi: 10.1137/S0036141004402683. Google Scholar

[7]

R. M. ColomboG. GuerraM. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050. doi: 10.1137/080716372. Google Scholar

[8]

R. M. Colombo and M. Garavello, A well posed Riemann problem for the p-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511. doi: 10.3934/nhm.2006.1.495. Google Scholar

[9]

R. M. Colombo and M. Garavello, On the Cauchy problem for the p-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471. doi: 10.1137/060665841. Google Scholar

[10]

R. M. ColomboM. Herty and V. Sachers, On 2×2 conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622. doi: 10.1137/070690298. Google Scholar

[11]

A. de Saint-Venant, Thèorie du mouvement non-permanent des eaux, avec application aux crues des rivière at à l'introduction des marèes dans leur lit., C.R. Acad. Sci. Paris, 73 (1871), 147-154. Google Scholar

[12]

M. Garavello and B. Piccoli, Traffic Flow on Networks, vol. 1 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006, Conservation laws models. Google Scholar

[13]

E. Godlewski and P. -A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, 118, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-0713-9. Google Scholar

[14]

M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow, SIAM J. Math. Anal., 38 (2006), 595-616. doi: 10.1137/05062617X. Google Scholar

[15]

M. Herty and M. Seaïd, Assessment of coupling conditions in water way intersections, Internat. J. Numer. Methods Fluids, 71 (2013), 1438-1460. doi: 10.1002/fld.3719. Google Scholar

[16]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017. doi: 10.1137/S0036141093243289. Google Scholar

[17]

H. Holden and N. H. Risebro, Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497-515 (electronic). doi: 10.1137/S0036141097327033. Google Scholar

[18]

S. Joana, M. Joris and T. Evangelos, Technical and Economical Characteristics of Co2 Transmission Pipeline Infrastructure, Technical report, JRC Scientic and Technical Reports, European Commission.Google Scholar

[19]

J.-P. Lebacque, Les modeles macroscopiques du traffic, Annales des Ponts., 67 (1993), 24-45. Google Scholar

[20]

F. Murzyn and H. Chanson, Experimental assessment of scale effects affecting two-phase flow properties in hydraulic jumps, Experiments in Fluids, 45 (2008), 513-521. doi: 10.1007/s00348-008-0494-4. Google Scholar

[21]

A. Osiadacz, Simulation of transient flow in gas networks, Int. Journal for Numerical Methods in Fluid Dynamics, 4 (1984), 13-23. doi: 10.1002/fld.1650040103. Google Scholar

[22]

B. Sultanian, Fluid Mechanics: An Intermediate Approach, CRC Press, 2015.Google Scholar

[23]

R. Ugarelli and V. D. Federico, Transition from supercritical to subcritical regime in free surface flow of yield stress fluids Geophys. Res. Lett. , 34 (2007), L21402. doi: 10.1029/2007GL031487. Google Scholar

Figure 1.  Junction of $n+m=|\delta^-|+|\delta^+|$ connected pipes
Figure 2.  The supply function $\rho {\,\mapsto\,} s(\rho;\bar{U})$ in red for given data $\bar{U}$ indicated by a cross for $\bar{\rho }>\rho^*$ (left) and $\bar{\rho }<\rho^*$ (right). Also shown in blue is the curve $L_2^-.$ The state $U^*$ is indicated by a circle.
Figure 3.  The demand function $\rho {\,\mapsto\,} d(\rho; \bar{U})$ in red for given data $\bar{U}$. Also shown in blue is the curve $L_1.$
Table 1.  Random initial states $U_{0,k}$ on incoming pipes $k<0$ and outgoing pipes $k>0.$ The initial difference in the sum of the mass fluxes is given by $\Delta = 9.162e+00.$
Pipe $k$$(\rho_{0,k},q_{0,k})$$p(\rho_{0,k})$
-1(5.151e-01, 2.519e+00)2.653e-01
-2(6.317e-01, 2.794e+00)3.991e-01
-3(6.642e-01, 3.905e+00)4.412e-01
1(5.730e-01, -2.648e-01)3.283e-01
2(7.460e-01, -1.523e-01)5.565e-01
3(5.931e-01, -1.280e-01)3.518e-01
4(5.849e-01, 6.020e-01)3.421e-01
Pipe $k$$(\rho_{0,k},q_{0,k})$$p(\rho_{0,k})$
-1(5.151e-01, 2.519e+00)2.653e-01
-2(6.317e-01, 2.794e+00)3.991e-01
-3(6.642e-01, 3.905e+00)4.412e-01
1(5.730e-01, -2.648e-01)3.283e-01
2(7.460e-01, -1.523e-01)5.565e-01
3(5.931e-01, -1.280e-01)3.518e-01
4(5.849e-01, 6.020e-01)3.421e-01
Table 2.  Terminal states $U_{k}(t,0\pm)$ for $k\in\delta^\pm.$ The difference in the sum of the mass fluxes is zero
Pipe $k$$(\rho_{k},q_{k})$$p(\rho_{k})$
-1(2.089e+00, 5.101e+00)4.364e+00
-2(2.089e+00, 4.868e+00)4.364e+00
-3(2.089e+00, 8.090e+00)4.364e+00
1(2.089e+00, 3.757e+00)4.364e+00
2(2.089e+00, 3.357e+00)4.364e+00
3(2.089e+00, 4.147e+00)4.364e+00
4(2.089e+00, 6.798e+00)4.364e+00
Pipe $k$$(\rho_{k},q_{k})$$p(\rho_{k})$
-1(2.089e+00, 5.101e+00)4.364e+00
-2(2.089e+00, 4.868e+00)4.364e+00
-3(2.089e+00, 8.090e+00)4.364e+00
1(2.089e+00, 3.757e+00)4.364e+00
2(2.089e+00, 3.357e+00)4.364e+00
3(2.089e+00, 4.147e+00)4.364e+00
4(2.089e+00, 6.798e+00)4.364e+00
[1]

Rinaldo M. Colombo, Francesca Marcellini. Coupling conditions for the $3\times 3$ Euler system. Networks & Heterogeneous Media, 2010, 5 (4) : 675-690. doi: 10.3934/nhm.2010.5.675

[2]

Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations. Networks & Heterogeneous Media, 2006, 1 (2) : 295-314. doi: 10.3934/nhm.2006.1.295

[3]

Rinaldo M. Colombo, Graziano Guerra. A coupling between a non--linear 1D compressible--incompressible limit and the 1D $p$--system in the non smooth case. Networks & Heterogeneous Media, 2016, 11 (2) : 313-330. doi: 10.3934/nhm.2016.11.313

[4]

Chol-Ung Choe, Thomas Dahms, Philipp Hövel, Eckehard Schöll. Control of synchrony by delay coupling in complex networks. Conference Publications, 2011, 2011 (Special) : 292-301. doi: 10.3934/proc.2011.2011.292

[5]

Pavel Jirásek. On Compactness Conditions for the $p$-Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 715-726. doi: 10.3934/cpaa.2016.15.715

[6]

Laura Sigalotti. Homogenization of pinning conditions on periodic networks. Networks & Heterogeneous Media, 2012, 7 (3) : 543-582. doi: 10.3934/nhm.2012.7.543

[7]

Eric Blayo, Antoine Rousseau. About interface conditions for coupling hydrostatic and nonhydrostatic Navier-Stokes flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1565-1574. doi: 10.3934/dcdss.2016063

[8]

Jens Lang, Pascal Mindt. Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks & Heterogeneous Media, 2018, 13 (1) : 177-190. doi: 10.3934/nhm.2018008

[9]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[10]

Francisco Odair de Paiva, Humberto Ramos Quoirin. Resonance and nonresonance for p-Laplacian problems with weighted eigenvalues conditions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1219-1227. doi: 10.3934/dcds.2009.25.1219

[11]

Petru Jebelean. Infinitely many solutions for ordinary $p$-Laplacian systems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (2) : 267-275. doi: 10.3934/cpaa.2008.7.267

[12]

Rinaldo M. Colombo, Mauro Garavello. A Well Posed Riemann Problem for the $p$--System at a Junction. Networks & Heterogeneous Media, 2006, 1 (3) : 495-511. doi: 10.3934/nhm.2006.1.495

[13]

Fernando Miranda, José-Francisco Rodrigues, Lisa Santos. On a p-curl system arising in electromagnetism. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 605-629. doi: 10.3934/dcdss.2012.5.605

[14]

Anna Mercaldo, Julio D. Rossi, Sergio Segura de León, Cristina Trombetti. Behaviour of $p$--Laplacian problems with Neumann boundary conditions when $p$ goes to 1. Communications on Pure & Applied Analysis, 2013, 12 (1) : 253-267. doi: 10.3934/cpaa.2013.12.253

[15]

Nicolo' Catapano. The rigorous derivation of the Linear Landau equation from a particle system in a weak-coupling limit. Kinetic & Related Models, 2018, 11 (3) : 647-695. doi: 10.3934/krm.2018027

[16]

Chui-Jie Wu, Hongliang Zhao. Generalized HWD-POD method and coupling low-dimensional dynamical system of turbulence. Conference Publications, 2001, 2001 (Special) : 371-379. doi: 10.3934/proc.2001.2001.371

[17]

Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations & Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008

[18]

Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689

[19]

Hichem Kasri, Amar Heminna. Exponential stability of a coupled system with Wentzell conditions. Evolution Equations & Control Theory, 2016, 5 (2) : 235-250. doi: 10.3934/eect.2016003

[20]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (13)
  • HTML views (24)
  • Cited by (0)

Other articles
by authors

[Back to Top]