# American Institute of Mathematical Sciences

March  2017, 12(1): 93-112. doi: 10.3934/nhm.2017004

## A discrete Hughes model for pedestrian flow on graphs

 1 Dip. di Scienze di Base e Applicate per l'Ingegneria, "Sapienza" Università di Roma, via Scarpa 16, 00161 Roma, Italy 2 RICAM, Austrian Academy of Sciences (ÖAW), Altenbergerstr. 69, 4040 Linz, Austria 3 Dip. di Matematica, "Sapienza" Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy

* Corresponding author:Fabio Camilli

Received  April 2016 Revised  December 2016 Published  February 2017

Fund Project: AF is supported the Austrian Academy of Sciences ÖAW via the New Frontiers Group NST-001.

In this paper, we introduce a discrete time-finite state model for pedestrian flow on a graph in the spirit of the Hughes dynamic continuum model. The pedestrians, represented by a density function, move on the graph choosing a route to minimize the instantaneous travel cost to the destination. The density is governed by a conservation law whereas the minimization principle is described by a graph eikonal equation. We show that the discrete model is well-posed and the numerical examples reported confirm the validity of the proposed model and its applicability to describe real situations.

Citation: Fabio Camilli, Adriano Festa, Silvia Tozza. A discrete Hughes model for pedestrian flow on graphs. Networks & Heterogeneous Media, 2017, 12 (1) : 93-112. doi: 10.3934/nhm.2017004
##### References:

show all references

##### References:
Scheme of the network and initial density.
Test 1 (Dirichlet boundary conditions): density and potential before the first time of interaction.
Test 1 (Dirichlet boundary conditions): density and potential after the first time of interaction at $(0.2,-0.8)$.
Test 2 (No-flux boundary conditions): stable configuration obtained for $t>3.5$.
Test 3 (Dirichlet BCs with diffusion $\epsilon=1$): Density at two different time steps ($t=0.75$ and $t=1.75$).
The Wuhan Sports Centre (left) and the evacuation network considered in our study (right).
Initial distribution of density on the graph (up) and drift potential in the initial configuration (down).
Initial distribution of density on the graph (up) and drift potential in the initial configuration (down).
 [1] W. Layton, R. Lewandowski. On a well-posed turbulence model. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 111-128. doi: 10.3934/dcdsb.2006.6.111 [2] Simone Göttlich, Stephan Knapp, Peter Schillen. A pedestrian flow model with stochastic velocities: Microscopic and macroscopic approaches. Kinetic & Related Models, 2018, 11 (6) : 1333-1358. doi: 10.3934/krm.2018052 [3] T. J. Sullivan. Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors. Inverse Problems & Imaging, 2017, 11 (5) : 857-874. doi: 10.3934/ipi.2017040 [4] Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1099-1104. doi: 10.3934/dcds.2014.34.1099 [5] Alberto Bressan, Graziano Guerra. Shift-differentiabilitiy of the flow generated by a conservation law. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 35-58. doi: 10.3934/dcds.1997.3.35 [6] Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255 [7] Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling. Networks & Heterogeneous Media, 2013, 8 (2) : 433-463. doi: 10.3934/nhm.2013.8.433 [8] Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401 [9] Marco Di Francesco, Simone Fagioli, Massimiliano Daniele Rosini, Giovanni Russo. Deterministic particle approximation of the Hughes model in one space dimension. Kinetic & Related Models, 2017, 10 (1) : 215-237. doi: 10.3934/krm.2017009 [10] Abdul M. Kamareddine, Roger L. Hughes. Towards a mathematical model for stability in pedestrian flows. Networks & Heterogeneous Media, 2011, 6 (3) : 465-483. doi: 10.3934/nhm.2011.6.465 [11] Mark A. Peletier, Marco Veneroni. Stripe patterns and the Eikonal equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 183-189. doi: 10.3934/dcdss.2012.5.183 [12] Tong Li. Well-posedness theory of an inhomogeneous traffic flow model. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 401-414. doi: 10.3934/dcdsb.2002.2.401 [13] Afaf Bouharguane. On the instability of a nonlocal conservation law. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 419-426. doi: 10.3934/dcdss.2012.5.419 [14] Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Homogenization of second order discrete model with local perturbation and application to traffic flow. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1437-1487. doi: 10.3934/dcds.2017060 [15] Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic & Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35 [16] Sergey A. Suslov. Two-equation model of mean flow resonances in subcritical flow systems. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 165-176. doi: 10.3934/dcdss.2008.1.165 [17] Chadi Nour. Construction of solutions to a global Eikonal equation. Conference Publications, 2007, 2007 (Special) : 779-783. doi: 10.3934/proc.2007.2007.779 [18] Dirk Hartmann, Isabella von Sivers. Structured first order conservation models for pedestrian dynamics. Networks & Heterogeneous Media, 2013, 8 (4) : 985-1007. doi: 10.3934/nhm.2013.8.985 [19] Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052 [20] Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2981-2990. doi: 10.3934/dcds.2016.36.2981

2018 Impact Factor: 0.871