March  2016, 11(1): 181-201. doi: 10.3934/nhm.2016.11.181

On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion

1. 

Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, N–0316 Oslo

2. 

Department of Mathematics, Faculty of Education, Zirve University, Gaziantep, 27260, Turkey

Received  April 2015 Revised  July 2015 Published  January 2016

We investigate a Keller-Segel model with quorum sensing and a fractional diffusion operator. This model describes the collective cell movement due to chemical sensing with flux limitation for high cell densities and with anomalous media represented by a nonlinear, degenerate fractional diffusion operator. The purpose of this paper is to introduce and prove the existence of a properly defined entropy solution.
Citation: Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181
References:
[1]

N. Alibaud, Entropy formulation for fractal conservation laws,, J. Evol. Equ., 7 (2007), 145. doi: 10.1007/s00028-006-0253-z.

[2]

F. Bartumeus, F. Peters, S. Pueyo, C. Marrase and J. Katalan, Helical lévy walks: Adjusting searching statistics to resource availability in microzooplankton,, Proc. Natl. Acad. Sci., 100 (2003), 12771. doi: 10.1073/pnas.2137243100.

[3]

J. Bedrossian, N. Rodríguez and A. L. Bertozzi, Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion,, Nonlinearity, 24 (2011), 1683. doi: 10.1088/0951-7715/24/6/001.

[4]

F. Ben Belgacem and P.-E. Jabin, Compactness for nonlinear transport equations,, J. Funct. Anal., 264 (2013), 139. doi: 10.1016/j.jfa.2012.10.005.

[5]

M. Bendahmane, K. H. Karlsen and J. M. Urbano, On a two-sidedly degenerate chemotaxis model with volume-filling effect,, Math. Methods Appl. Sci., 17 (2007), 783. doi: 10.1142/S0218202507002108.

[6]

P. Biler, T. Funaki and W. A. Woyczynski, Fractal Burgers equations,, J. Differential Equations, 148 (1998), 9. doi: 10.1006/jdeq.1998.3458.

[7]

P. Biler and G. Karch, Blowup of solutions to generalized Keller-Segel model,, J. Evol. Equ., 10 (2010), 247. doi: 10.1007/s00028-009-0048-0.

[8]

P. Biler, G. Karch and W. A. Woyczyński, Asymptotics for conservation laws involving Lévy diffusion generators,, Studia Math., 148 (2001), 171. doi: 10.4064/sm148-2-5.

[9]

P. Biler and W. A. Woyczyński, Global and exploding solutions for nonlocal quadratic evolution problems,, SIAM J. Appl. Math., 59 (1999), 845. doi: 10.1137/S0036139996313447.

[10]

P. Biler and G. Wu, Two-dimensional chemotaxis models with fractional diffusion,, Math. Methods Appl. Sci., 32 (2009), 112. doi: 10.1002/mma.1036.

[11]

A. Blanchet, J. A. Carrillo and P. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions,, Calc. Var. Partial Differential Equations, 35 (2009), 133. doi: 10.1007/s00526-008-0200-7.

[12]

A. Bueno-Orovio, D. Kay, V. Grau, B. Rodriguez and K. Burrage, Fractional diffusion models of cardiac electrical propagation: Role of structural heterogeneity in dispersion of repolarization,, J. R. Soc. Interface, 11 (2014). doi: 10.1098/rsif.2014.0352.

[13]

N. Bournaveas and V. Calvez, The one-dimensional Keller-Segel model with fractional diffusion of cells,, Nonlinearity, 23 (2010), 923. doi: 10.1088/0951-7715/23/4/009.

[14]

M. Burger, V. Capasso and D. Morale, On an aggregation model with long and short range interactions,, Nonlinear Anal. Real World Appl., 8 (2007), 939. doi: 10.1016/j.nonrwa.2006.04.002.

[15]

M. Burger, M. Di Francesco and Y. Dolak-Struss, The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion,, SIAM J. Math. Anal., 38 (2006), 1288. doi: 10.1137/050637923.

[16]

M. Burger, Y. Dolak-Struss and C. Schmeiser, Asymptotic analysis of an advection-dominated chemotaxis model in multiple spatial dimensions,, Commun. Math. Sci., 6 (2008), 1. doi: 10.4310/CMS.2008.v6.n1.a1.

[17]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245. doi: 10.1080/03605300600987306.

[18]

L. A. Caffarelli and P. E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front propagation,, Arch. Ration. Mech. Anal., 195 (2010), 1. doi: 10.1007/s00205-008-0181-x.

[19]

L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, Ann. of Math. (2), 171 (2010), 1903. doi: 10.4007/annals.2010.171.1903.

[20]

S. Cifani and E. R. Jakobsen, Entropy solution theory for fractional degenerate convection-diffusion equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 413. doi: 10.1016/j.anihpc.2011.02.006.

[21]

N. V. Chemetov, Nonlinear hyperbolic-elliptic systems in the bounded domain,, Commun. Pure Appl. Anal., 10 (2011), 1079. doi: 10.3934/cpaa.2011.10.1079.

[22]

N. Chemetov and W. Neves, The generalized Buckley-Leverett System: Solvability,, Arch. Ration. Mech. Anal., 208 (2013), 1. doi: 10.1007/s00205-012-0591-7.

[23]

G.-Q. Chen, Q. Ding and K. H. Karlsen, On nonlinear stochastic balance laws,, Arch. Ration. Mech. Anal., 204 (2012), 707. doi: 10.1007/s00205-011-0489-9.

[24]

G. M. Coclite, K. H. Karlsen, S. Mishra and N. H. Risebro, A hyperbolic-elliptic model of two-phase flow in porous media - existence of entropy solutions,, Int. J. Numer. Anal. Model., 9 (2012), 562.

[25]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Phys., 249 (2004), 511. doi: 10.1007/s00220-004-1055-1.

[26]

A. Córdoba and D. Córdoba, A pointwise estimate for fractionary derivatives with applications to partial differential equations,, Proc. Natl. Acad. Sci. USA, 100 (2003), 15316. doi: 10.1073/pnas.2036515100.

[27]

A. Debussche and J. Vovelle, Scalar conservation laws with stochastic forcing,, J. Funct. Anal., 259 (2010), 1014. doi: 10.1016/j.jfa.2010.02.016.

[28]

Y. Dolak and C. Schmeiser, The Keller-Segel model with logistic sensitivity function and small diffusivity,, SIAM J. Appl. Math., 66 (2005), 286. doi: 10.1137/040612841.

[29]

J. Droniou, T. Gallouet and J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation,, J. Evol. Equ., 3 (2003), 499. doi: 10.1007/s00028-003-0503-1.

[30]

J. Droniou and C. Imbert, Fractal first-order partial differential equations,, Arch. Ration. Mech. Anal., 182 (2006), 299. doi: 10.1007/s00205-006-0429-2.

[31]

C. Escudero, Chemotactic collapse and mesenchymal morphogenesis,, Phys Rev E Stat Nonlin Soft Matter Phys, 72 (2005). doi: 10.1103/PhysRevE.72.022903.

[32]

C. Escudero, The fractional Keller-Segel model,, Nonlinearity, 19 (2006), 2909. doi: 10.1088/0951-7715/19/12/010.

[33]

L. C. Evans, Partial Differential Equations, volume 19 of {Graduate Studies in Mathematics,, American Mathematical Society, (2010). doi: 10.1090/gsm/019.

[34]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3.

[35]

S. Jarohs and T. Weth, Asymptotic symmetry for a class of nonlinear fractional reaction diffusion equations,, Discrete and Continuous Dynamical Systems-A, 34 (2014), 2581. doi: 10.3934/dcds.2014.34.2581.

[36]

K. H. Karlsen and S. Ulusoy, Stability of entropy solutions for Lévy mixed hyperbolic-parabolic equations,, Electron. J. Differential Equations, 2011 (2011), 1.

[37]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, Journal of Theoretical Biology, 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5.

[38]

E. F. Keller and L. A. Segel, Model for chemotaxis,, Journal of Theoretical Biology, 30 (1971), 225. doi: 10.1016/0022-5193(71)90050-6.

[39]

A. Kiselev, F. Nazarov and R. Shterenberg, Blow up and regularity for fractal Burgers equation,, Dyn. Partial Differ. Equ., 5 (2008), 211. doi: 10.4310/DPDE.2008.v5.n3.a2.

[40]

J. Klafter, B. S. White and M. Levandowsky, Microzooplankton feeding behavior and the Lévy walks,, Biological Motion, 89 (1990), 281. doi: 10.1007/978-3-642-51664-1_20.

[41]

S. N. Kružkov, Results on the nature of the continuity of solutions of parabolic equations, and certain applications thereof,, Mat. Zametki, 6 (1969), 97.

[42]

S. N. Kružkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228.

[43]

M. Levandowsky, B. S. White and F. L. Schuster, Random movements of soil amebas,, Acta Protozool, 36 (1997), 237.

[44]

F. Matthäus, M. S. Mommer, T. Curk and J. Dobnikar, On the origin and characteristics of noise-induced Lévy walks of E. Coli,, PLoS ONE, 6 (2011).

[45]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1. doi: 10.1016/S0370-1573(00)00070-3.

[46]

F. Otto, $L^1-$contraction and uniqueness for quasilinear elliptic-parabolic equations,, C. R. Acad. Sci. Paris Sér I Math., 321 (1995), 1005. doi: 10.1006/jdeq.1996.0155.

[47]

C. S. Patlak, Random walk with persistence and external bias,, Bull. Math. Biophys., 15 (1953), 311. doi: 10.1007/BF02476407.

[48]

B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model,, Trans. Amer. Math. Soc., 361 (2009), 2319. doi: 10.1090/S0002-9947-08-04656-4.

[49]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196. doi: 10.1093/biomet/38.1-2.196.

[50]

Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models,, Adv. Differential Equations, 12 (2007), 121.

[51]

C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation,, Bull. Math. Biol., 68 (2006), 1601. doi: 10.1007/s11538-006-9088-6.

[52]

G. Wu and X. Zheng, On the well-posedness for Keller-Segel system with fractional diffusion,, Math. Methods Appl. Sci., 34 (2011), 1739. doi: 10.1002/mma.1480.

show all references

References:
[1]

N. Alibaud, Entropy formulation for fractal conservation laws,, J. Evol. Equ., 7 (2007), 145. doi: 10.1007/s00028-006-0253-z.

[2]

F. Bartumeus, F. Peters, S. Pueyo, C. Marrase and J. Katalan, Helical lévy walks: Adjusting searching statistics to resource availability in microzooplankton,, Proc. Natl. Acad. Sci., 100 (2003), 12771. doi: 10.1073/pnas.2137243100.

[3]

J. Bedrossian, N. Rodríguez and A. L. Bertozzi, Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion,, Nonlinearity, 24 (2011), 1683. doi: 10.1088/0951-7715/24/6/001.

[4]

F. Ben Belgacem and P.-E. Jabin, Compactness for nonlinear transport equations,, J. Funct. Anal., 264 (2013), 139. doi: 10.1016/j.jfa.2012.10.005.

[5]

M. Bendahmane, K. H. Karlsen and J. M. Urbano, On a two-sidedly degenerate chemotaxis model with volume-filling effect,, Math. Methods Appl. Sci., 17 (2007), 783. doi: 10.1142/S0218202507002108.

[6]

P. Biler, T. Funaki and W. A. Woyczynski, Fractal Burgers equations,, J. Differential Equations, 148 (1998), 9. doi: 10.1006/jdeq.1998.3458.

[7]

P. Biler and G. Karch, Blowup of solutions to generalized Keller-Segel model,, J. Evol. Equ., 10 (2010), 247. doi: 10.1007/s00028-009-0048-0.

[8]

P. Biler, G. Karch and W. A. Woyczyński, Asymptotics for conservation laws involving Lévy diffusion generators,, Studia Math., 148 (2001), 171. doi: 10.4064/sm148-2-5.

[9]

P. Biler and W. A. Woyczyński, Global and exploding solutions for nonlocal quadratic evolution problems,, SIAM J. Appl. Math., 59 (1999), 845. doi: 10.1137/S0036139996313447.

[10]

P. Biler and G. Wu, Two-dimensional chemotaxis models with fractional diffusion,, Math. Methods Appl. Sci., 32 (2009), 112. doi: 10.1002/mma.1036.

[11]

A. Blanchet, J. A. Carrillo and P. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions,, Calc. Var. Partial Differential Equations, 35 (2009), 133. doi: 10.1007/s00526-008-0200-7.

[12]

A. Bueno-Orovio, D. Kay, V. Grau, B. Rodriguez and K. Burrage, Fractional diffusion models of cardiac electrical propagation: Role of structural heterogeneity in dispersion of repolarization,, J. R. Soc. Interface, 11 (2014). doi: 10.1098/rsif.2014.0352.

[13]

N. Bournaveas and V. Calvez, The one-dimensional Keller-Segel model with fractional diffusion of cells,, Nonlinearity, 23 (2010), 923. doi: 10.1088/0951-7715/23/4/009.

[14]

M. Burger, V. Capasso and D. Morale, On an aggregation model with long and short range interactions,, Nonlinear Anal. Real World Appl., 8 (2007), 939. doi: 10.1016/j.nonrwa.2006.04.002.

[15]

M. Burger, M. Di Francesco and Y. Dolak-Struss, The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion,, SIAM J. Math. Anal., 38 (2006), 1288. doi: 10.1137/050637923.

[16]

M. Burger, Y. Dolak-Struss and C. Schmeiser, Asymptotic analysis of an advection-dominated chemotaxis model in multiple spatial dimensions,, Commun. Math. Sci., 6 (2008), 1. doi: 10.4310/CMS.2008.v6.n1.a1.

[17]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245. doi: 10.1080/03605300600987306.

[18]

L. A. Caffarelli and P. E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front propagation,, Arch. Ration. Mech. Anal., 195 (2010), 1. doi: 10.1007/s00205-008-0181-x.

[19]

L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, Ann. of Math. (2), 171 (2010), 1903. doi: 10.4007/annals.2010.171.1903.

[20]

S. Cifani and E. R. Jakobsen, Entropy solution theory for fractional degenerate convection-diffusion equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 413. doi: 10.1016/j.anihpc.2011.02.006.

[21]

N. V. Chemetov, Nonlinear hyperbolic-elliptic systems in the bounded domain,, Commun. Pure Appl. Anal., 10 (2011), 1079. doi: 10.3934/cpaa.2011.10.1079.

[22]

N. Chemetov and W. Neves, The generalized Buckley-Leverett System: Solvability,, Arch. Ration. Mech. Anal., 208 (2013), 1. doi: 10.1007/s00205-012-0591-7.

[23]

G.-Q. Chen, Q. Ding and K. H. Karlsen, On nonlinear stochastic balance laws,, Arch. Ration. Mech. Anal., 204 (2012), 707. doi: 10.1007/s00205-011-0489-9.

[24]

G. M. Coclite, K. H. Karlsen, S. Mishra and N. H. Risebro, A hyperbolic-elliptic model of two-phase flow in porous media - existence of entropy solutions,, Int. J. Numer. Anal. Model., 9 (2012), 562.

[25]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Phys., 249 (2004), 511. doi: 10.1007/s00220-004-1055-1.

[26]

A. Córdoba and D. Córdoba, A pointwise estimate for fractionary derivatives with applications to partial differential equations,, Proc. Natl. Acad. Sci. USA, 100 (2003), 15316. doi: 10.1073/pnas.2036515100.

[27]

A. Debussche and J. Vovelle, Scalar conservation laws with stochastic forcing,, J. Funct. Anal., 259 (2010), 1014. doi: 10.1016/j.jfa.2010.02.016.

[28]

Y. Dolak and C. Schmeiser, The Keller-Segel model with logistic sensitivity function and small diffusivity,, SIAM J. Appl. Math., 66 (2005), 286. doi: 10.1137/040612841.

[29]

J. Droniou, T. Gallouet and J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation,, J. Evol. Equ., 3 (2003), 499. doi: 10.1007/s00028-003-0503-1.

[30]

J. Droniou and C. Imbert, Fractal first-order partial differential equations,, Arch. Ration. Mech. Anal., 182 (2006), 299. doi: 10.1007/s00205-006-0429-2.

[31]

C. Escudero, Chemotactic collapse and mesenchymal morphogenesis,, Phys Rev E Stat Nonlin Soft Matter Phys, 72 (2005). doi: 10.1103/PhysRevE.72.022903.

[32]

C. Escudero, The fractional Keller-Segel model,, Nonlinearity, 19 (2006), 2909. doi: 10.1088/0951-7715/19/12/010.

[33]

L. C. Evans, Partial Differential Equations, volume 19 of {Graduate Studies in Mathematics,, American Mathematical Society, (2010). doi: 10.1090/gsm/019.

[34]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3.

[35]

S. Jarohs and T. Weth, Asymptotic symmetry for a class of nonlinear fractional reaction diffusion equations,, Discrete and Continuous Dynamical Systems-A, 34 (2014), 2581. doi: 10.3934/dcds.2014.34.2581.

[36]

K. H. Karlsen and S. Ulusoy, Stability of entropy solutions for Lévy mixed hyperbolic-parabolic equations,, Electron. J. Differential Equations, 2011 (2011), 1.

[37]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, Journal of Theoretical Biology, 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5.

[38]

E. F. Keller and L. A. Segel, Model for chemotaxis,, Journal of Theoretical Biology, 30 (1971), 225. doi: 10.1016/0022-5193(71)90050-6.

[39]

A. Kiselev, F. Nazarov and R. Shterenberg, Blow up and regularity for fractal Burgers equation,, Dyn. Partial Differ. Equ., 5 (2008), 211. doi: 10.4310/DPDE.2008.v5.n3.a2.

[40]

J. Klafter, B. S. White and M. Levandowsky, Microzooplankton feeding behavior and the Lévy walks,, Biological Motion, 89 (1990), 281. doi: 10.1007/978-3-642-51664-1_20.

[41]

S. N. Kružkov, Results on the nature of the continuity of solutions of parabolic equations, and certain applications thereof,, Mat. Zametki, 6 (1969), 97.

[42]

S. N. Kružkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228.

[43]

M. Levandowsky, B. S. White and F. L. Schuster, Random movements of soil amebas,, Acta Protozool, 36 (1997), 237.

[44]

F. Matthäus, M. S. Mommer, T. Curk and J. Dobnikar, On the origin and characteristics of noise-induced Lévy walks of E. Coli,, PLoS ONE, 6 (2011).

[45]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1. doi: 10.1016/S0370-1573(00)00070-3.

[46]

F. Otto, $L^1-$contraction and uniqueness for quasilinear elliptic-parabolic equations,, C. R. Acad. Sci. Paris Sér I Math., 321 (1995), 1005. doi: 10.1006/jdeq.1996.0155.

[47]

C. S. Patlak, Random walk with persistence and external bias,, Bull. Math. Biophys., 15 (1953), 311. doi: 10.1007/BF02476407.

[48]

B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model,, Trans. Amer. Math. Soc., 361 (2009), 2319. doi: 10.1090/S0002-9947-08-04656-4.

[49]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196. doi: 10.1093/biomet/38.1-2.196.

[50]

Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models,, Adv. Differential Equations, 12 (2007), 121.

[51]

C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation,, Bull. Math. Biol., 68 (2006), 1601. doi: 10.1007/s11538-006-9088-6.

[52]

G. Wu and X. Zheng, On the well-posedness for Keller-Segel system with fractional diffusion,, Math. Methods Appl. Sci., 34 (2011), 1739. doi: 10.1002/mma.1480.

[1]

Qi Wang, Jingyue Yang, Feng Yu. Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5021-5036. doi: 10.3934/dcds.2017216

[2]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[3]

Luca Battaglia. A general existence result for stationary solutions to the Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 905-926. doi: 10.3934/dcds.2019038

[4]

Jaewook Ahn, Kyungkeun Kang. On a Keller-Segel system with logarithmic sensitivity and non-diffusive chemical. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5165-5179. doi: 10.3934/dcds.2014.34.5165

[5]

Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 115-126. doi: 10.3934/dcdss.2012.5.115

[6]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[7]

Shen Bian, Jian-Guo Liu, Chen Zou. Ultra-contractivity for Keller-Segel model with diffusion exponent $m>1-2/d$. Kinetic & Related Models, 2014, 7 (1) : 9-28. doi: 10.3934/krm.2014.7.9

[8]

Hui Huang, Jian-Guo Liu. Error estimates of the aggregation-diffusion splitting algorithms for the Keller-Segel equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3463-3478. doi: 10.3934/dcdsb.2016107

[9]

Hui Huang, Jian-Guo Liu. Well-posedness for the Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos. Kinetic & Related Models, 2016, 9 (4) : 715-748. doi: 10.3934/krm.2016013

[10]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[11]

Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203

[12]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[13]

Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093

[14]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[15]

Jan Burczak, Rafael Granero-Belinchón. Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 139-164. doi: 10.3934/dcdss.2020008

[16]

Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061

[17]

Ping Liu, Junping Shi, Zhi-An Wang. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2597-2625. doi: 10.3934/dcdsb.2013.18.2597

[18]

Hongyun Peng, Zhi-An Wang, Kun Zhao, Changjiang Zhu. Boundary layers and stabilization of the singular Keller-Segel system. Kinetic & Related Models, 2018, 11 (5) : 1085-1123. doi: 10.3934/krm.2018042

[19]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[20]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]