June  2015, 10(2): 369-385. doi: 10.3934/nhm.2015.10.369

Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology

1. 

Institut de Mathématiques de Bordeaux, UMR CNRS 5251, Université de Bordeaux, 3 ter Place de la Victoire, 33076 Bordeaux cedex, France, France

2. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000

Received  November 2013 Revised  March 2015 Published  April 2015

In this paper, we study the stability result for the conductivities diffusion coefficients to a strongly reaction-diffusion system modeling electrical activity in the heart. To study the problem, we establish a Carleman estimate for our system. The proof is based on the combination of a Carleman estimate and certain weight energy estimates for parabolic systems.
Citation: Bedr'Eddine Ainseba, Mostafa Bendahmane, Yuan He. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology. Networks & Heterogeneous Media, 2015, 10 (2) : 369-385. doi: 10.3934/nhm.2015.10.369
References:
[1]

M. Bendahmane and F. W. Chaves-Silva, Controllability of a degenerating reaction-diffusion system in electrocardiology,, to appear in SIAM Journal on Control and Optimization, (). Google Scholar

[2]

M. Bendahmane and K. H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue,, Netw. Heterog. Media, 1 (2006), 185. doi: 10.3934/nhm.2006.1.185. Google Scholar

[3]

M. Bendahmane and K. H. Karlsen, Convergence of a finite volume scheme for the bidomain model of cardiac tissue,, Appl. Numer. Math., 59 (2009), 2266. doi: 10.1016/j.apnum.2008.12.016. Google Scholar

[4]

M. Bendahmane, R. Bürger and R. Ruiz Baier, A finite volume scheme for cardiac propagation in media with isotropic conductivities,, Math. Comp. Simul., 80 (2010), 1821. doi: 10.1016/j.matcom.2009.12.010. Google Scholar

[5]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011). Google Scholar

[6]

A. L. Bukhgeĭm, Carleman estimates for Volterra operators and uniqueness of inverse problems,, in Non-classical Problems of Mathematical Physics, (1981), 56. Google Scholar

[7]

A. L. Bukhgeim, Introduction to the Theory of Inverse Problems,, VSP, (2000). Google Scholar

[8]

A. L. Bukhgeim and M. V. Klibanov, Uniqueness in the large class of multidimensional inverse problems,, (Russian) Dokl. Akad. Nauk SSSR, 260 (1981), 269. Google Scholar

[9]

K. C. Chang, Methods in Nonlinear Analysis,, Springer-Verlag Berlin Heidelberg, (2005). Google Scholar

[10]

P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level,, in Evolution Equations, (2000), 49. Google Scholar

[11]

M. Cristofol, P. Gaitan and H. Ramoul, Inverse problems for a $2 \times 2$ reaction-diffusion system using a Carleman estimate with one observation,, Inverse Problems, 22 (2006), 1561. doi: 10.1088/0266-5611/22/5/003. Google Scholar

[12]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations,, Lecture Notes Series, (1996). Google Scholar

[13]

O.Yu. Imanuvilov, M. Yamamoto, Lipschitz stability in inverse problems by Carleman estimates,, Inverse Problems, 14 (1998), 1229. doi: 10.1088/0266-5611/14/5/009. Google Scholar

[14]

O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates for the non-stationary Lamé system and the application to an inverse problem,, ESAIM, 11 (2005), 1. doi: 10.1051/cocv:2004030. Google Scholar

[15]

V. Isakov, Carleman estimates and applications to inverse problems,, Milan J. Math., 72 (2004), 249. doi: 10.1007/s00032-004-0033-6. Google Scholar

[16]

M. V. Klibanov, Carleman estimates and inverse problems in the lasrt two decades,, in Surveys on Solution Methods for Inverse Problems, (2000), 119. Google Scholar

[17]

M. V. Klibanov and M. Yamamoto, Lipschitz stability of an inverse problem for an acoustic equation,, Appl. Anal., 85 (2006), 515. doi: 10.1080/00036810500474788. Google Scholar

[18]

M. A. Krasnoselskii, Positive Solutions of Operator Equations,, Noordhoff, (1964). Google Scholar

[19]

G. Lebeau and L. Robbiano, Contrôle exact de l'equation de la chaleur,, Comm. Partial Differential Equations, 20 (1995), 335. doi: 10.1080/03605309508821097. Google Scholar

[20]

J.-P. Puel and M. Yamamoto, On a global estimate in a linear inverse hyperbolic problem,, Inverse Problems, 12 (1996), 995. doi: 10.1088/0266-5611/12/6/013. Google Scholar

[21]

K. Sakthivel, N. Baranibalan, J.-H. Kim and K. Balachandran, Stability of diffusion coefficients in an inverse problem for the Lotka-Volterra competition system,, Acta Appl. Math., 111 (2010), 129. doi: 10.1007/s10440-009-9455-z. Google Scholar

[22]

Z. Q. Wu, J. X. Yin and C. P. Wang, Elliptic and Parabolic Equations,, World Scientific Publishing Co. Pte. Ltd, (2003). doi: 10.1142/6238. Google Scholar

[23]

M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems,, J. Math. Pures Appl., 78 (1999), 65. doi: 10.1016/S0021-7824(99)80010-5. Google Scholar

[24]

G. Yuan and M. Yamamoto, Lipshitz stability in the determination of the principal part of a parabolic equation,, ESAIM: Control Optim. Calc. Var., 15 (2009), 525. doi: 10.1051/cocv:2008043. Google Scholar

show all references

References:
[1]

M. Bendahmane and F. W. Chaves-Silva, Controllability of a degenerating reaction-diffusion system in electrocardiology,, to appear in SIAM Journal on Control and Optimization, (). Google Scholar

[2]

M. Bendahmane and K. H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue,, Netw. Heterog. Media, 1 (2006), 185. doi: 10.3934/nhm.2006.1.185. Google Scholar

[3]

M. Bendahmane and K. H. Karlsen, Convergence of a finite volume scheme for the bidomain model of cardiac tissue,, Appl. Numer. Math., 59 (2009), 2266. doi: 10.1016/j.apnum.2008.12.016. Google Scholar

[4]

M. Bendahmane, R. Bürger and R. Ruiz Baier, A finite volume scheme for cardiac propagation in media with isotropic conductivities,, Math. Comp. Simul., 80 (2010), 1821. doi: 10.1016/j.matcom.2009.12.010. Google Scholar

[5]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011). Google Scholar

[6]

A. L. Bukhgeĭm, Carleman estimates for Volterra operators and uniqueness of inverse problems,, in Non-classical Problems of Mathematical Physics, (1981), 56. Google Scholar

[7]

A. L. Bukhgeim, Introduction to the Theory of Inverse Problems,, VSP, (2000). Google Scholar

[8]

A. L. Bukhgeim and M. V. Klibanov, Uniqueness in the large class of multidimensional inverse problems,, (Russian) Dokl. Akad. Nauk SSSR, 260 (1981), 269. Google Scholar

[9]

K. C. Chang, Methods in Nonlinear Analysis,, Springer-Verlag Berlin Heidelberg, (2005). Google Scholar

[10]

P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level,, in Evolution Equations, (2000), 49. Google Scholar

[11]

M. Cristofol, P. Gaitan and H. Ramoul, Inverse problems for a $2 \times 2$ reaction-diffusion system using a Carleman estimate with one observation,, Inverse Problems, 22 (2006), 1561. doi: 10.1088/0266-5611/22/5/003. Google Scholar

[12]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations,, Lecture Notes Series, (1996). Google Scholar

[13]

O.Yu. Imanuvilov, M. Yamamoto, Lipschitz stability in inverse problems by Carleman estimates,, Inverse Problems, 14 (1998), 1229. doi: 10.1088/0266-5611/14/5/009. Google Scholar

[14]

O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates for the non-stationary Lamé system and the application to an inverse problem,, ESAIM, 11 (2005), 1. doi: 10.1051/cocv:2004030. Google Scholar

[15]

V. Isakov, Carleman estimates and applications to inverse problems,, Milan J. Math., 72 (2004), 249. doi: 10.1007/s00032-004-0033-6. Google Scholar

[16]

M. V. Klibanov, Carleman estimates and inverse problems in the lasrt two decades,, in Surveys on Solution Methods for Inverse Problems, (2000), 119. Google Scholar

[17]

M. V. Klibanov and M. Yamamoto, Lipschitz stability of an inverse problem for an acoustic equation,, Appl. Anal., 85 (2006), 515. doi: 10.1080/00036810500474788. Google Scholar

[18]

M. A. Krasnoselskii, Positive Solutions of Operator Equations,, Noordhoff, (1964). Google Scholar

[19]

G. Lebeau and L. Robbiano, Contrôle exact de l'equation de la chaleur,, Comm. Partial Differential Equations, 20 (1995), 335. doi: 10.1080/03605309508821097. Google Scholar

[20]

J.-P. Puel and M. Yamamoto, On a global estimate in a linear inverse hyperbolic problem,, Inverse Problems, 12 (1996), 995. doi: 10.1088/0266-5611/12/6/013. Google Scholar

[21]

K. Sakthivel, N. Baranibalan, J.-H. Kim and K. Balachandran, Stability of diffusion coefficients in an inverse problem for the Lotka-Volterra competition system,, Acta Appl. Math., 111 (2010), 129. doi: 10.1007/s10440-009-9455-z. Google Scholar

[22]

Z. Q. Wu, J. X. Yin and C. P. Wang, Elliptic and Parabolic Equations,, World Scientific Publishing Co. Pte. Ltd, (2003). doi: 10.1142/6238. Google Scholar

[23]

M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems,, J. Math. Pures Appl., 78 (1999), 65. doi: 10.1016/S0021-7824(99)80010-5. Google Scholar

[24]

G. Yuan and M. Yamamoto, Lipshitz stability in the determination of the principal part of a parabolic equation,, ESAIM: Control Optim. Calc. Var., 15 (2009), 525. doi: 10.1051/cocv:2008043. Google Scholar

[1]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[2]

José-Francisco Rodrigues, João Lita da Silva. On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem. Communications on Pure & Applied Analysis, 2004, 3 (1) : 85-95. doi: 10.3934/cpaa.2004.3.85

[3]

Mostafa Bendahmane, Kenneth H. Karlsen. Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue. Networks & Heterogeneous Media, 2006, 1 (1) : 185-218. doi: 10.3934/nhm.2006.1.185

[4]

Sheng-Chen Fu, Je-Chiang Tsai. Stability of travelling waves of a reaction-diffusion system for the acidic nitrate-ferroin reaction. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4041-4069. doi: 10.3934/dcds.2013.33.4041

[5]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[6]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[7]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[8]

Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106

[9]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[10]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[11]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[12]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

[13]

Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure & Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141

[14]

Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169

[15]

Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227

[16]

W. E. Fitzgibbon, M. Langlais, J.J. Morgan. A reaction-diffusion system modeling direct and indirect transmission of diseases. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 893-910. doi: 10.3934/dcdsb.2004.4.893

[17]

José-Francisco Rodrigues, Lisa Santos. On a constrained reaction-diffusion system related to multiphase problems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 299-319. doi: 10.3934/dcds.2009.25.299

[18]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[19]

Sebastian Aniţa, Vincenzo Capasso. Stabilization of a reaction-diffusion system modelling malaria transmission. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1673-1684. doi: 10.3934/dcdsb.2012.17.1673

[20]

Michaël Bages, Patrick Martinez. Existence of pulsating waves in a monostable reaction-diffusion system in solid combustion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 817-869. doi: 10.3934/dcdsb.2010.14.817

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

[Back to Top]