June  2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321

On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime

1. 

Universität Augsburg, Institut für Mathematik, Universitätsstr. 14, 86159 Augsburg, Germany, Germany

Received  March 2014 Revised  October 2014 Published  April 2015

We consider a two-dimensional atomic mass spring system and show that in the small displacement regime the corresponding discrete energies can be related to a continuum Griffith energy functional in the sense of $\Gamma$-convergence. We also analyze the continuum problem for a rectangular bar under tensile boundary conditions and find that depending on the boundary loading the minimizers are either homogeneous elastic deformations or configurations that are completely cracked generically along a crystallographic line. As applications we discuss cleavage properties of strained crystals and an effective continuum fracture energy for magnets.
Citation: Manuel Friedrich, Bernd Schmidt. On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks & Heterogeneous Media, 2015, 10 (2) : 321-342. doi: 10.3934/nhm.2015.10.321
References:
[1]

G. Alberti and C. Mantegazza, A note on the theory of $SBV$ functions,, Boll. Un. Mat. Ital. B (7), 11 (1989), 375. Google Scholar

[2]

R. Alicandro, M. Focardi and M. S. Gelli, Finite-difference approximation of energies in fracture mechanics,, Ann. Scuola Norm. Sup., 29 (2000), 671. Google Scholar

[3]

L. Ambrosio, A compactness theorem for a special class of functions of bounded variation,, Boll. Un. Mat. Ital. B (7), 3 (1989), 857. Google Scholar

[4]

L. Ambrosio, Existence theory for a new class of variational problems,, Arch. Ration. Mech. Anal., 111 (1990), 291. doi: 10.1007/BF00376024. Google Scholar

[5]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems,, Oxford University Press, (2000). Google Scholar

[6]

A. Braides, $\Gamma$-convergence for Beginners,, Oxford University Press, (2002). doi: 10.1093/acprof:oso/9780198507840.001.0001. Google Scholar

[7]

A. Braides and M. Cicalese, Surface energies in nonconvex discrete systems,, Math. Models Methods Appl. Sci., 17 (2007), 985. doi: 10.1142/S0218202507002182. Google Scholar

[8]

A. Braides, G. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics. The one-dimensional case,, Arch. Ration. Mech. Anal., 146 (1999), 23. doi: 10.1007/s002050050135. Google Scholar

[9]

A. Braides and M. S. Gelli, Limits of discrete systems without convexity hypotheses,, Math. Mech. Solids, 7 (2002), 41. doi: 10.1177/1081286502007001229. Google Scholar

[10]

A. Braides and M. S. Gelli, Limits of discrete systems with long-range interactions,, J. Convex Anal., 9 (2002), 363. Google Scholar

[11]

A. Braides, A. Lew and M. Ortiz, Effective cohesive behavior of layers of interatomic planes,, Arch. Ration. Mech. Anal., 180 (2006), 151. doi: 10.1007/s00205-005-0399-9. Google Scholar

[12]

A. Braides, M. Solci and E. Vitali, A derivation of linear elastic energies from pair-interaction atomistic systems,, Netw. Heterog. Media, 2 (2007), 551. doi: 10.3934/nhm.2007.2.551. Google Scholar

[13]

A. Chambolle, A. Giacomini and M. Ponsiglione, Piecewise rigidity,, J. Funct. Anal. Solids, 244 (2007), 134. doi: 10.1016/j.jfa.2006.11.006. Google Scholar

[14]

S. Conti, G. Dolzmann, B. Kirchheim and S. Müller, Sufficient conditions for the validity of the Cauchy-Born rule close to $SO(n)$,, J. Eur Math. Soc., 8 (2006), 515. doi: 10.4171/JEMS/65. Google Scholar

[15]

G. Cortesani and R. Toader, A density result in SBV with respect to non-isotropic energies,, Nonlinear Analysis, 38 (1999), 585. doi: 10.1016/S0362-546X(98)00132-1. Google Scholar

[16]

G. Dal Maso, An Introduction to $\Gamma$-convergence,, Birkhäuser, (1993). doi: 10.1007/978-1-4612-0327-8. Google Scholar

[17]

E. De Giorgi and L. Ambrosio, Un nuovo funzionale del calcolo delle variazioni,, Acc. Naz. Lincei, 82 (1988), 199. Google Scholar

[18]

H. Federer, Geometric Measure Theory,, Springer, (1969). Google Scholar

[19]

M. Focardi and M. S. Gelli, Approximation results by difference schemes of fracture energies: The vectorial case,, NoDEA Nonlinear Differential Equations Appl., 10 (2003), 469. doi: 10.1007/s00030-003-1002-4. Google Scholar

[20]

G. A. Francfort and J. J. Marigo, Revisiting brittle fracture as an energy minimization problem,, J. Mech. Phys. Solids, 46 (1998), 1319. doi: 10.1016/S0022-5096(98)00034-9. Google Scholar

[21]

M. Friedrich and B. Schmidt, An atomistic-to-continuum analysis of crystal cleavage in a two-dimensional model problem,, J. Nonlin. Sci., 24 (2014), 145. doi: 10.1007/s00332-013-9187-0. Google Scholar

[22]

G. Friesecke, R. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity,, Comm. Pure Appl. Math., 55 (2002), 1461. doi: 10.1002/cpa.10048. Google Scholar

[23]

G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice,, J. Nonlinear Sci., 12 (2002), 445. doi: 10.1007/s00332-002-0495-z. Google Scholar

[24]

A. Giacomini, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures,, Calc. Var. Partial Differential Equations, 22 (2005), 129. doi: 10.1007/s00526-004-0269-6. Google Scholar

[25]

C. Mora-Corral, Explicit energy-minimizers of incompressible elastic brittle bars under uniaxial extension,, C. R. Acad. Sci. Paris, 348 (2010), 1045. doi: 10.1016/j.crma.2010.09.005. Google Scholar

[26]

M. Negri, Finite element approximation of the Griffith's model in fracture mechanics,, Numer. Math., 95 (2003), 653. doi: 10.1007/s00211-003-0456-y. Google Scholar

[27]

B. Schmidt, On the derivation of linear elasticity from atomistic models,, Netw. Heterog. Media, 4 (2009), 789. doi: 10.3934/nhm.2009.4.789. Google Scholar

show all references

References:
[1]

G. Alberti and C. Mantegazza, A note on the theory of $SBV$ functions,, Boll. Un. Mat. Ital. B (7), 11 (1989), 375. Google Scholar

[2]

R. Alicandro, M. Focardi and M. S. Gelli, Finite-difference approximation of energies in fracture mechanics,, Ann. Scuola Norm. Sup., 29 (2000), 671. Google Scholar

[3]

L. Ambrosio, A compactness theorem for a special class of functions of bounded variation,, Boll. Un. Mat. Ital. B (7), 3 (1989), 857. Google Scholar

[4]

L. Ambrosio, Existence theory for a new class of variational problems,, Arch. Ration. Mech. Anal., 111 (1990), 291. doi: 10.1007/BF00376024. Google Scholar

[5]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems,, Oxford University Press, (2000). Google Scholar

[6]

A. Braides, $\Gamma$-convergence for Beginners,, Oxford University Press, (2002). doi: 10.1093/acprof:oso/9780198507840.001.0001. Google Scholar

[7]

A. Braides and M. Cicalese, Surface energies in nonconvex discrete systems,, Math. Models Methods Appl. Sci., 17 (2007), 985. doi: 10.1142/S0218202507002182. Google Scholar

[8]

A. Braides, G. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics. The one-dimensional case,, Arch. Ration. Mech. Anal., 146 (1999), 23. doi: 10.1007/s002050050135. Google Scholar

[9]

A. Braides and M. S. Gelli, Limits of discrete systems without convexity hypotheses,, Math. Mech. Solids, 7 (2002), 41. doi: 10.1177/1081286502007001229. Google Scholar

[10]

A. Braides and M. S. Gelli, Limits of discrete systems with long-range interactions,, J. Convex Anal., 9 (2002), 363. Google Scholar

[11]

A. Braides, A. Lew and M. Ortiz, Effective cohesive behavior of layers of interatomic planes,, Arch. Ration. Mech. Anal., 180 (2006), 151. doi: 10.1007/s00205-005-0399-9. Google Scholar

[12]

A. Braides, M. Solci and E. Vitali, A derivation of linear elastic energies from pair-interaction atomistic systems,, Netw. Heterog. Media, 2 (2007), 551. doi: 10.3934/nhm.2007.2.551. Google Scholar

[13]

A. Chambolle, A. Giacomini and M. Ponsiglione, Piecewise rigidity,, J. Funct. Anal. Solids, 244 (2007), 134. doi: 10.1016/j.jfa.2006.11.006. Google Scholar

[14]

S. Conti, G. Dolzmann, B. Kirchheim and S. Müller, Sufficient conditions for the validity of the Cauchy-Born rule close to $SO(n)$,, J. Eur Math. Soc., 8 (2006), 515. doi: 10.4171/JEMS/65. Google Scholar

[15]

G. Cortesani and R. Toader, A density result in SBV with respect to non-isotropic energies,, Nonlinear Analysis, 38 (1999), 585. doi: 10.1016/S0362-546X(98)00132-1. Google Scholar

[16]

G. Dal Maso, An Introduction to $\Gamma$-convergence,, Birkhäuser, (1993). doi: 10.1007/978-1-4612-0327-8. Google Scholar

[17]

E. De Giorgi and L. Ambrosio, Un nuovo funzionale del calcolo delle variazioni,, Acc. Naz. Lincei, 82 (1988), 199. Google Scholar

[18]

H. Federer, Geometric Measure Theory,, Springer, (1969). Google Scholar

[19]

M. Focardi and M. S. Gelli, Approximation results by difference schemes of fracture energies: The vectorial case,, NoDEA Nonlinear Differential Equations Appl., 10 (2003), 469. doi: 10.1007/s00030-003-1002-4. Google Scholar

[20]

G. A. Francfort and J. J. Marigo, Revisiting brittle fracture as an energy minimization problem,, J. Mech. Phys. Solids, 46 (1998), 1319. doi: 10.1016/S0022-5096(98)00034-9. Google Scholar

[21]

M. Friedrich and B. Schmidt, An atomistic-to-continuum analysis of crystal cleavage in a two-dimensional model problem,, J. Nonlin. Sci., 24 (2014), 145. doi: 10.1007/s00332-013-9187-0. Google Scholar

[22]

G. Friesecke, R. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity,, Comm. Pure Appl. Math., 55 (2002), 1461. doi: 10.1002/cpa.10048. Google Scholar

[23]

G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice,, J. Nonlinear Sci., 12 (2002), 445. doi: 10.1007/s00332-002-0495-z. Google Scholar

[24]

A. Giacomini, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures,, Calc. Var. Partial Differential Equations, 22 (2005), 129. doi: 10.1007/s00526-004-0269-6. Google Scholar

[25]

C. Mora-Corral, Explicit energy-minimizers of incompressible elastic brittle bars under uniaxial extension,, C. R. Acad. Sci. Paris, 348 (2010), 1045. doi: 10.1016/j.crma.2010.09.005. Google Scholar

[26]

M. Negri, Finite element approximation of the Griffith's model in fracture mechanics,, Numer. Math., 95 (2003), 653. doi: 10.1007/s00211-003-0456-y. Google Scholar

[27]

B. Schmidt, On the derivation of linear elasticity from atomistic models,, Netw. Heterog. Media, 4 (2009), 789. doi: 10.3934/nhm.2009.4.789. Google Scholar

[1]

Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri. Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks & Heterogeneous Media, 2009, 4 (4) : 667-708. doi: 10.3934/nhm.2009.4.667

[2]

Gianni Dal Maso, Flaviana Iurlano. Fracture models as $\Gamma$-limits of damage models. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1657-1686. doi: 10.3934/cpaa.2013.12.1657

[3]

Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343

[4]

Bernd Schmidt. On the derivation of linear elasticity from atomistic models. Networks & Heterogeneous Media, 2009, 4 (4) : 789-812. doi: 10.3934/nhm.2009.4.789

[5]

John Murrough Golden. Constructing free energies for materials with memory. Evolution Equations & Control Theory, 2014, 3 (3) : 447-483. doi: 10.3934/eect.2014.3.447

[6]

Mariano Giaquinta, Paolo Maria Mariano, Giuseppe Modica. A variational problem in the mechanics of complex materials. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 519-537. doi: 10.3934/dcds.2010.28.519

[7]

Ricardo Almeida. Optimality conditions for fractional variational problems with free terminal time. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 1-19. doi: 10.3934/dcdss.2018001

[8]

Claudio Canuto, Anna Cattani. The derivation of continuum limits of neuronal networks with gap-junction couplings. Networks & Heterogeneous Media, 2014, 9 (1) : 111-133. doi: 10.3934/nhm.2014.9.111

[9]

Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235

[10]

G. Idone, A. Maugeri. Variational inequalities and a transport planning for an elastic and continuum model. Journal of Industrial & Management Optimization, 2005, 1 (1) : 81-86. doi: 10.3934/jimo.2005.1.81

[11]

Gabriella Bretti, Ciro D’Apice, Rosanna Manzo, Benedetto Piccoli. A continuum-discrete model for supply chains dynamics. Networks & Heterogeneous Media, 2007, 2 (4) : 661-694. doi: 10.3934/nhm.2007.2.661

[12]

Agnese Di Castro, Mayte Pérez-Llanos, José Miguel Urbano. Limits of anisotropic and degenerate elliptic problems. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1217-1229. doi: 10.3934/cpaa.2012.11.1217

[13]

Tanka Nath Dhamala. A survey on models and algorithms for discrete evacuation planning network problems. Journal of Industrial & Management Optimization, 2015, 11 (1) : 265-289. doi: 10.3934/jimo.2015.11.265

[14]

Pranay Goel, James Sneyd. Gap junctions and excitation patterns in continuum models of islets. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1969-1990. doi: 10.3934/dcdsb.2012.17.1969

[15]

Giuseppina Autuori, Patrizia Pucci. Entire solutions of nonlocal elasticity models for composite materials. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 357-377. doi: 10.3934/dcdss.2018020

[16]

Piotr Gwiazda, Piotr Minakowski, Agnieszka Świerczewska-Gwiazda. On the anisotropic Orlicz spaces applied in the problems of continuum mechanics. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1291-1306. doi: 10.3934/dcdss.2013.6.1291

[17]

Jesus Garcia Azorero, Juan J. Manfredi, I. Peral, Julio D. Rossi. Limits for Monge-Kantorovich mass transport problems. Communications on Pure & Applied Analysis, 2008, 7 (4) : 853-865. doi: 10.3934/cpaa.2008.7.853

[18]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[19]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems & Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267

[20]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems & Imaging, 2012, 6 (2) : 215-266. doi: 10.3934/ipi.2012.6.215

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]