September  2014, 9(3): 477-499. doi: 10.3934/nhm.2014.9.477

Myopic models of population dynamics on infinite networks

1. 

Department of Mathematics, University of Colorado at Colorado Springs, Colorado Springs, CO 80918, United States

Received  November 2013 Revised  June 2014 Published  October 2014

Reaction-diffusion equations are treated on infinite networks using semigroup methods. To blend high fidelity local analysis with coarse remote modeling, initial data and solutions come from a uniformly closed algebra generated by functions which are flat at infinity. The algebra is associated with a compactification of the network which facilitates the description of spatial asymptotics. Diffusive effects disappear at infinity, greatly simplifying the remote dynamics. Accelerated diffusion models with conventional eigenfunction expansions are constructed to provide opportunities for finite dimensional approximation.
Citation: Robert Carlson. Myopic models of population dynamics on infinite networks. Networks & Heterogeneous Media, 2014, 9 (3) : 477-499. doi: 10.3934/nhm.2014.9.477
References:
[1]

R. Carlson, Boundary value problems for infinite metric graphs,, Analysis on Graphs and Its Applications, 77 (2008), 355. doi: 10.1090/pspum/077/2459880. Google Scholar

[2]

E. A. Coddington and R. Carlson, Linear Ordinary Differential Equations,, SIAM, (1997). doi: 10.1137/1.9781611971439. Google Scholar

[3]

F. Chung, Spectral Graph Theory,, American Mathematical Society, (1997). Google Scholar

[4]

V. Colizza, R. Pastor-Satorras and A. Vespignani, Reaction-diffusion processes and metapopulation models in heterogeneous networks,, Nature Physics, 3 (2007), 276. doi: 10.1038/nphys560. Google Scholar

[5]

E. B. Davies, Heat Kernels and Spectral Theory,, Cambridge University Press, (1990). Google Scholar

[6]

E. B. Davies, Large deviations for heat kernels on graphs,, J. London Math. Soc. (2), 47 (1993), 65. doi: 10.1112/jlms/s2-47.1.65. Google Scholar

[7]

R. Diestel, Graph Theory,, Springer, (2005). Google Scholar

[8]

J. Dodziuk, Elliptic operators on infinite graphs,, in Analysis, (2006), 353. Google Scholar

[9]

P. Doyle and J. Snell, Random Walks and Electrical Networks,, Mathematical Association of America, (1984). Google Scholar

[10]

P. Fife, Mathematical Aspects of Reacting and Diffusing Systems,, Springer-Verlag, (1979). Google Scholar

[11]

A. Georgakopoulos, Graph topologies induced by edge lengths,, Discrete Mathematics, 311 (2011), 1523. doi: 10.1016/j.disc.2011.02.012. Google Scholar

[12]

S. Haeseler, M. Keller, D. Lenz and R. Wojciechowski, Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions,, J. Spectral Theory, 2 (2012), 397. Google Scholar

[13]

P. Hartman, Ordinary Differential Equations,, Wiley, (1973). Google Scholar

[14]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer, (1981). Google Scholar

[15]

J. Hocking and G. Young, Topology,, Addison-Wesley, (1961). Google Scholar

[16]

T. Kato, Perturbation Theory for Linear Operators,, Springer-Verlag, (1995). Google Scholar

[17]

M. Keeling and K. Eames, Networks and epidemic models,, Journal of the Royal Society Interface, 2 (2005). doi: 10.1098/rsif.2005.0051. Google Scholar

[18]

M. Keller and D. Lenz, Unbounded Laplacians on graphs: basic spectral properties and the heat equation,, Math. Model. Nat. Phenom., 5 (2010), 198. doi: 10.1051/mmnp/20105409. Google Scholar

[19]

P. Lax, Functional Analysis,, John Wiley & Sons, (2002). Google Scholar

[20]

T. Liggett, Continuous Time Markov Processes,, American Mathematical Society, (2010). Google Scholar

[21]

R. Lyons and Y. Peres, Probability on Trees and Networks,, preprint., (). Google Scholar

[22]

D. Mugnolo, Semigroup Methods for Evolution Equations on Networks,, Springer, (2014). Google Scholar

[23]

J. Murray, Mathematical Biology I: An Introduction,, Springer, (2002). Google Scholar

[24]

J. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications,, Springer, (2003). Google Scholar

[25]

M. Newman, A. Barabasi and D. Watts, The Structure and Dynamics of Networks,, Princeton University Press, (2006). Google Scholar

[26]

M. Newman, Spread of epidemic disease on networks,, Physical Review E, 66 (2002). doi: 10.1103/PhysRevE.66.016128. Google Scholar

[27]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[28]

J. Ramirez, Population persistence under advection-diffusion in river networks,, Journal of Mathematical Biology, 65 (2012), 919. doi: 10.1007/s00285-011-0485-6. Google Scholar

[29]

H. Royden, Real Analysis,, Macmillan, (1988). Google Scholar

[30]

J. Sarhad, R Carlson and K. Anderson, Population persistence in river networks,, Journal of Mathematical Biology, (2013). doi: 10.1007/s00285-013-0710-6. Google Scholar

[31]

M. Yamasaki, Parabolic and hyberbolic infinite networks,, Hiroshima Math. J., 7 (1977), 135. Google Scholar

show all references

References:
[1]

R. Carlson, Boundary value problems for infinite metric graphs,, Analysis on Graphs and Its Applications, 77 (2008), 355. doi: 10.1090/pspum/077/2459880. Google Scholar

[2]

E. A. Coddington and R. Carlson, Linear Ordinary Differential Equations,, SIAM, (1997). doi: 10.1137/1.9781611971439. Google Scholar

[3]

F. Chung, Spectral Graph Theory,, American Mathematical Society, (1997). Google Scholar

[4]

V. Colizza, R. Pastor-Satorras and A. Vespignani, Reaction-diffusion processes and metapopulation models in heterogeneous networks,, Nature Physics, 3 (2007), 276. doi: 10.1038/nphys560. Google Scholar

[5]

E. B. Davies, Heat Kernels and Spectral Theory,, Cambridge University Press, (1990). Google Scholar

[6]

E. B. Davies, Large deviations for heat kernels on graphs,, J. London Math. Soc. (2), 47 (1993), 65. doi: 10.1112/jlms/s2-47.1.65. Google Scholar

[7]

R. Diestel, Graph Theory,, Springer, (2005). Google Scholar

[8]

J. Dodziuk, Elliptic operators on infinite graphs,, in Analysis, (2006), 353. Google Scholar

[9]

P. Doyle and J. Snell, Random Walks and Electrical Networks,, Mathematical Association of America, (1984). Google Scholar

[10]

P. Fife, Mathematical Aspects of Reacting and Diffusing Systems,, Springer-Verlag, (1979). Google Scholar

[11]

A. Georgakopoulos, Graph topologies induced by edge lengths,, Discrete Mathematics, 311 (2011), 1523. doi: 10.1016/j.disc.2011.02.012. Google Scholar

[12]

S. Haeseler, M. Keller, D. Lenz and R. Wojciechowski, Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions,, J. Spectral Theory, 2 (2012), 397. Google Scholar

[13]

P. Hartman, Ordinary Differential Equations,, Wiley, (1973). Google Scholar

[14]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer, (1981). Google Scholar

[15]

J. Hocking and G. Young, Topology,, Addison-Wesley, (1961). Google Scholar

[16]

T. Kato, Perturbation Theory for Linear Operators,, Springer-Verlag, (1995). Google Scholar

[17]

M. Keeling and K. Eames, Networks and epidemic models,, Journal of the Royal Society Interface, 2 (2005). doi: 10.1098/rsif.2005.0051. Google Scholar

[18]

M. Keller and D. Lenz, Unbounded Laplacians on graphs: basic spectral properties and the heat equation,, Math. Model. Nat. Phenom., 5 (2010), 198. doi: 10.1051/mmnp/20105409. Google Scholar

[19]

P. Lax, Functional Analysis,, John Wiley & Sons, (2002). Google Scholar

[20]

T. Liggett, Continuous Time Markov Processes,, American Mathematical Society, (2010). Google Scholar

[21]

R. Lyons and Y. Peres, Probability on Trees and Networks,, preprint., (). Google Scholar

[22]

D. Mugnolo, Semigroup Methods for Evolution Equations on Networks,, Springer, (2014). Google Scholar

[23]

J. Murray, Mathematical Biology I: An Introduction,, Springer, (2002). Google Scholar

[24]

J. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications,, Springer, (2003). Google Scholar

[25]

M. Newman, A. Barabasi and D. Watts, The Structure and Dynamics of Networks,, Princeton University Press, (2006). Google Scholar

[26]

M. Newman, Spread of epidemic disease on networks,, Physical Review E, 66 (2002). doi: 10.1103/PhysRevE.66.016128. Google Scholar

[27]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[28]

J. Ramirez, Population persistence under advection-diffusion in river networks,, Journal of Mathematical Biology, 65 (2012), 919. doi: 10.1007/s00285-011-0485-6. Google Scholar

[29]

H. Royden, Real Analysis,, Macmillan, (1988). Google Scholar

[30]

J. Sarhad, R Carlson and K. Anderson, Population persistence in river networks,, Journal of Mathematical Biology, (2013). doi: 10.1007/s00285-013-0710-6. Google Scholar

[31]

M. Yamasaki, Parabolic and hyberbolic infinite networks,, Hiroshima Math. J., 7 (1977), 135. Google Scholar

[1]

Heather Finotti, Suzanne Lenhart, Tuoc Van Phan. Optimal control of advective direction in reaction-diffusion population models. Evolution Equations & Control Theory, 2012, 1 (1) : 81-107. doi: 10.3934/eect.2012.1.81

[2]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[3]

Guangrui Li, Ming Mei, Yau Shu Wong. Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences & Engineering, 2008, 5 (1) : 85-100. doi: 10.3934/mbe.2008.5.85

[4]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[5]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[6]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[7]

T. S. Evans, A. D. K. Plato. Network rewiring models. Networks & Heterogeneous Media, 2008, 3 (2) : 221-238. doi: 10.3934/nhm.2008.3.221

[8]

Tanka Nath Dhamala. A survey on models and algorithms for discrete evacuation planning network problems. Journal of Industrial & Management Optimization, 2015, 11 (1) : 265-289. doi: 10.3934/jimo.2015.11.265

[9]

Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246

[10]

José-Francisco Rodrigues, Lisa Santos. On a constrained reaction-diffusion system related to multiphase problems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 299-319. doi: 10.3934/dcds.2009.25.299

[11]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

[12]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed I - The case of the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 41-67. doi: 10.3934/dcds.2008.21.41

[13]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed II - cylindrical-type domains. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 19-61. doi: 10.3934/dcds.2009.25.19

[14]

Anotida Madzvamuse, Hussaini Ndakwo, Raquel Barreira. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2133-2170. doi: 10.3934/dcds.2016.36.2133

[15]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[16]

Simone Göttlich, Stephan Knapp. Semi-Markovian capacities in production network models. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3235-3258. doi: 10.3934/dcdsb.2017090

[17]

Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar. Optimal control for continuous supply network models. Networks & Heterogeneous Media, 2006, 1 (4) : 675-688. doi: 10.3934/nhm.2006.1.675

[18]

Patrick Guidotti. A family of nonlinear diffusions connecting Perona-Malik to standard diffusion. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 581-590. doi: 10.3934/dcdss.2012.5.581

[19]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[20]

Alexander Mielke, Sina Reichelt, Marita Thomas. Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks & Heterogeneous Media, 2014, 9 (2) : 353-382. doi: 10.3934/nhm.2014.9.353

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]