• Previous Article
    Structured first order conservation models for pedestrian dynamics
  • NHM Home
  • This Issue
  • Next Article
    Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia
December  2013, 8(4): 969-984. doi: 10.3934/nhm.2013.8.969

Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes

1. 

Department of Mathematics, University of Bari, Via E. Orabona 4, I--70125 Bari

2. 

Department of Mathematics, University of Bari, via E. Orabona 4, 70125 Bari, Italy

3. 

Seminar for Applied Mathematics (SAM), ETH Zürich, HG G 57.2, Rämistrasse 101, 8092 Zürich, Switzerland, Switzerland

Received  October 2012 Revised  April 2013 Published  November 2013

Flow of two phases in a heterogeneous porous medium is modeled by a scalar conservation law with a discontinuous coefficient. As solutions of conservation laws with discontinuous coefficients depend explicitly on the underlying small scale effects, we consider a model where the relevant small scale effect is dynamic capillary pressure. We prove that the limit of vanishing dynamic capillary pressure exists and is a weak solution of the corresponding scalar conservation law with discontinuous coefficient. A robust numerical scheme for approximating the resulting limit solutions is introduced. Numerical experiments show that the scheme is able to approximate interesting solution features such as propagating non-classical shock waves as well as discontinuous standing waves efficiently.
Citation: Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra. Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks & Heterogeneous Media, 2013, 8 (4) : 969-984. doi: 10.3934/nhm.2013.8.969
References:
[1]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions,, J. Hyp. Diff. Eqns., 2 (2005), 783. doi: 10.1142/S0219891605000622. Google Scholar

[2]

B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux,, Arch. Ration. Mech. Anal., 201 (2011), 27. doi: 10.1007/s00205-010-0389-4. Google Scholar

[3]

E. Audusse and B. Perthame, Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies,, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 253. doi: 10.1017/S0308210500003863. Google Scholar

[4]

K. Aziz and A. Settari, Fundamentals of Petroleum Reservoir Simulation,, Applied Science Publishers, (1979). Google Scholar

[5]

R. Bürger, K. H. Karlsen, N. H. Risebro and J. D. Towers, Well posedness in $BV_t$ and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units,, Numer. Math., 97 (2004), 25. doi: 10.1007/s00211-003-0503-8. Google Scholar

[6]

G. M. Coclite and K. H. Karlsen, A singular limit problem for conservation laws related to the Camassa-Holm shallow water equation,, Comm. Partial Differential Equations, 31 (2006), 1253. doi: 10.1080/03605300600781600. Google Scholar

[7]

G. M. Coclite, K. H. Karlsen, S. Mishra and N. H. Risebro, Convergence of vanishing viscosity approximations of $2\times2$ triangular systems of multi-dimensional conservation laws,, Boll. Unione Mat. Ital. (9), 2 (2009), 275. Google Scholar

[8]

C. Dafermos, Hyperbolic Conservation laws in Continuum Physics,, $3^{rd}$ edition, (2005). Google Scholar

[9]

E. vanDuijn, L. A. Peletier and S. Pop, A new class of entropy solutions of the Buckley-Leverett equation,, SIAM J. Math. Anal., 39 (2007), 507. doi: 10.1137/05064518X. Google Scholar

[10]

T. Gimse and N. H. Risebro, Solution of the Cauchy problem for a conservation law with a discontinuous flux function,, SIAM J. Math. Anal., 23 (1992), 635. doi: 10.1137/0523032. Google Scholar

[11]

R. Helmig, A. Weiss and B. I. Wohlmuth, Dynamic capillary effects in heterogeneous porous media,, Comp. Geosci., 11 (2007), 261. doi: 10.1007/s10596-007-9050-1. Google Scholar

[12]

S. Hassanizadeh and W. G. Gray, Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries,, Adv. Wat. Res., 13 (1990), 169. doi: 10.1016/0309-1708(90)90040-B. Google Scholar

[13]

H. Holden, K. H. Karlsen and D. Mitrovic, Zero diffusion-dispersion-smoothing limits for scalar conservation law with discontinuous flux function,, International Journal of Differential Equations, 2009 (2009), 1. Google Scholar

[14]

H. Holden, K. H. Karlsen, D. Mitrovic and E. Y. Panov, Strong compactness of approximate solutions to degenerate elliptic-hyperbolic equations with discontinuous flux function,, Acta Mathematica Scientia, 29B (2009), 573. doi: 10.1016/S0252-9602(10)60004-5. Google Scholar

[15]

K. H. Karlsen and F. Kissling, On the singular limit of a two-phase flow equation with heterogeneities and dynamic capillary pressure,, Z. Angew. Math. Mech., (). Google Scholar

[16]

K. H. Karlsen, N. H. Risebro and J. Towers, $L^1$ stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients,, Skr. K. Nor. Vidensk. Selsk., 3 (2003), 1. Google Scholar

[17]

F. Kissling and C. Rohde, The computation of nonclassical shock waves with a heterogeneous multiscale method,, Netw. Heterog. Media, 5 (2010), 661. doi: 10.3934/nhm.2010.5.661. Google Scholar

[18]

P. LeFloch, Hyperbolic Systems of Conservation Laws: The Theory Of Classical and Non-Classical Shock Waves,, Lecture notes in Mathematics., (2002). doi: 10.1007/978-3-0348-8150-0. Google Scholar

[19]

S. Mishra and J. Jaffré, On the upstream mobility scheme for two-phase flow in porous media,, Comp. GeoSci., 14 (2010), 105. doi: 10.1007/s10596-009-9135-0. Google Scholar

[20]

F. Murat, L'injection du cône positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q<2$,, J. Math. Pures Appl. (9), 60 (1981), 309. Google Scholar

[21]

S. Mochon, An analysis of the traffic on highways with changing surface conditions,, Math. Model., 9 (1987), 1. doi: 10.1016/0270-0255(87)90068-6. Google Scholar

[22]

E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux,, Arch. Ration. Mech. Anal., 195 (2010), 643. doi: 10.1007/s00205-009-0217-x. Google Scholar

[23]

E. Yu. Panov, Erratum to: Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux,, Arch. Ration. Mech. Anal., 196 (2010), 1077. doi: 10.1007/s00205-010-0303-0. Google Scholar

show all references

References:
[1]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions,, J. Hyp. Diff. Eqns., 2 (2005), 783. doi: 10.1142/S0219891605000622. Google Scholar

[2]

B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux,, Arch. Ration. Mech. Anal., 201 (2011), 27. doi: 10.1007/s00205-010-0389-4. Google Scholar

[3]

E. Audusse and B. Perthame, Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies,, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 253. doi: 10.1017/S0308210500003863. Google Scholar

[4]

K. Aziz and A. Settari, Fundamentals of Petroleum Reservoir Simulation,, Applied Science Publishers, (1979). Google Scholar

[5]

R. Bürger, K. H. Karlsen, N. H. Risebro and J. D. Towers, Well posedness in $BV_t$ and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units,, Numer. Math., 97 (2004), 25. doi: 10.1007/s00211-003-0503-8. Google Scholar

[6]

G. M. Coclite and K. H. Karlsen, A singular limit problem for conservation laws related to the Camassa-Holm shallow water equation,, Comm. Partial Differential Equations, 31 (2006), 1253. doi: 10.1080/03605300600781600. Google Scholar

[7]

G. M. Coclite, K. H. Karlsen, S. Mishra and N. H. Risebro, Convergence of vanishing viscosity approximations of $2\times2$ triangular systems of multi-dimensional conservation laws,, Boll. Unione Mat. Ital. (9), 2 (2009), 275. Google Scholar

[8]

C. Dafermos, Hyperbolic Conservation laws in Continuum Physics,, $3^{rd}$ edition, (2005). Google Scholar

[9]

E. vanDuijn, L. A. Peletier and S. Pop, A new class of entropy solutions of the Buckley-Leverett equation,, SIAM J. Math. Anal., 39 (2007), 507. doi: 10.1137/05064518X. Google Scholar

[10]

T. Gimse and N. H. Risebro, Solution of the Cauchy problem for a conservation law with a discontinuous flux function,, SIAM J. Math. Anal., 23 (1992), 635. doi: 10.1137/0523032. Google Scholar

[11]

R. Helmig, A. Weiss and B. I. Wohlmuth, Dynamic capillary effects in heterogeneous porous media,, Comp. Geosci., 11 (2007), 261. doi: 10.1007/s10596-007-9050-1. Google Scholar

[12]

S. Hassanizadeh and W. G. Gray, Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries,, Adv. Wat. Res., 13 (1990), 169. doi: 10.1016/0309-1708(90)90040-B. Google Scholar

[13]

H. Holden, K. H. Karlsen and D. Mitrovic, Zero diffusion-dispersion-smoothing limits for scalar conservation law with discontinuous flux function,, International Journal of Differential Equations, 2009 (2009), 1. Google Scholar

[14]

H. Holden, K. H. Karlsen, D. Mitrovic and E. Y. Panov, Strong compactness of approximate solutions to degenerate elliptic-hyperbolic equations with discontinuous flux function,, Acta Mathematica Scientia, 29B (2009), 573. doi: 10.1016/S0252-9602(10)60004-5. Google Scholar

[15]

K. H. Karlsen and F. Kissling, On the singular limit of a two-phase flow equation with heterogeneities and dynamic capillary pressure,, Z. Angew. Math. Mech., (). Google Scholar

[16]

K. H. Karlsen, N. H. Risebro and J. Towers, $L^1$ stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients,, Skr. K. Nor. Vidensk. Selsk., 3 (2003), 1. Google Scholar

[17]

F. Kissling and C. Rohde, The computation of nonclassical shock waves with a heterogeneous multiscale method,, Netw. Heterog. Media, 5 (2010), 661. doi: 10.3934/nhm.2010.5.661. Google Scholar

[18]

P. LeFloch, Hyperbolic Systems of Conservation Laws: The Theory Of Classical and Non-Classical Shock Waves,, Lecture notes in Mathematics., (2002). doi: 10.1007/978-3-0348-8150-0. Google Scholar

[19]

S. Mishra and J. Jaffré, On the upstream mobility scheme for two-phase flow in porous media,, Comp. GeoSci., 14 (2010), 105. doi: 10.1007/s10596-009-9135-0. Google Scholar

[20]

F. Murat, L'injection du cône positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q<2$,, J. Math. Pures Appl. (9), 60 (1981), 309. Google Scholar

[21]

S. Mochon, An analysis of the traffic on highways with changing surface conditions,, Math. Model., 9 (1987), 1. doi: 10.1016/0270-0255(87)90068-6. Google Scholar

[22]

E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux,, Arch. Ration. Mech. Anal., 195 (2010), 643. doi: 10.1007/s00205-009-0217-x. Google Scholar

[23]

E. Yu. Panov, Erratum to: Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux,, Arch. Ration. Mech. Anal., 196 (2010), 1077. doi: 10.1007/s00205-010-0303-0. Google Scholar

[1]

Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617

[2]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[3]

. Adimurthi, Siddhartha Mishra, G.D. Veerappa Gowda. Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes. Networks & Heterogeneous Media, 2007, 2 (1) : 127-157. doi: 10.3934/nhm.2007.2.127

[4]

João-Paulo Dias, Mário Figueira. On the Riemann problem for some discontinuous systems of conservation laws describing phase transitions. Communications on Pure & Applied Analysis, 2004, 3 (1) : 53-58. doi: 10.3934/cpaa.2004.3.53

[5]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[6]

Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 931-942. doi: 10.3934/cpaa.2019045

[7]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[8]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[9]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[10]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[11]

Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044

[12]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[13]

Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure & Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755

[14]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[15]

Julien Jimenez. Scalar conservation law with discontinuous flux in a bounded domain. Conference Publications, 2007, 2007 (Special) : 520-530. doi: 10.3934/proc.2007.2007.520

[16]

Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks & Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393

[17]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[18]

Rinaldo M. Colombo, Kenneth H. Karlsen, Frédéric Lagoutière, Andrea Marson. Special issue on contemporary topics in conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : i-ii. doi: 10.3934/nhm.2016.11.2i

[19]

Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644

[20]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic & Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (11)

[Back to Top]