American Institute of Mathematical Sciences

December  2012, 7(4): 837-855. doi: 10.3934/nhm.2012.7.837

Towards classification of multiple-end solutions to the Allen-Cahn equation in $\mathbb{R}^2$

 1 Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile 2 Departamento de Ingeniería Matemática and CMM, (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Santiago 3 Centre de Mathématiques Laurent Schwartz, École Polytechnique, UMR-CNRS 7640, 91128 Palaiseau, France

Received  May 2012 Revised  October 2012 Published  December 2012

An entire solution of the Allen-Cahn equation $\Delta u=f(u)$, where $f$ is an odd function and has exactly three zeros at $\pm 1$ and $0$, e.g. $f(u)=u(u^2-1)$, is called a $2k$-ended solution if its nodal set is asymptotic to $2k$ half lines, and if along each of these half lines the function $u$ looks (up to a multiplication by $-1$) like the one dimensional, odd, heteroclinic solution $H$, of $H''=f(H)$. In this paper we present some recent advances in the theory of the multiple-end solutions. We begin with the description of the moduli space of such solutions. Next we move on to study a special class of these solutions with just four ends. A special example is the saddle solutions $U$ whose nodal lines are precisely the straight lines $y=\pm x$. We describe the connected components of the moduli space of $4$-ended solutions. Finally we establish a uniqueness result which gives a complete classification of these solutions. It says that all $4$-ended solutions are continuous deformations of the saddle solution.
Citation: Michał Kowalczyk, Yong Liu, Frank Pacard. Towards classification of multiple-end solutions to the Allen-Cahn equation in $\mathbb{R}^2$. Networks & Heterogeneous Media, 2012, 7 (4) : 837-855. doi: 10.3934/nhm.2012.7.837
References:
 [1] F. Alessio, A. Calamai and P. Montecchiari, Saddle-type solutions for a class of semilinear elliptic equations,, Adv. Differential Equations, 12 (2007), 361. Google Scholar [2] L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $R^3$ and a conjecture of De Giorgi,, J. Amer. Math. Soc., 13 (2000), 725. doi: 10.1090/S0894-0347-00-00345-3. Google Scholar [3] M. T. Barlow, R. F. Bass and C. Gui, The Liouville property and a conjecture of De Giorgi,, Comm. Pure Appl. Math., 53 (2000), 1007. doi: 10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.3.CO;2-L. Google Scholar [4] H. Berestycki, F. Hamel and R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations,, Duke Math. J., 103 (2000), 375. doi: 10.1215/S0012-7094-00-10331-6. Google Scholar [5] E. N. Dancer, Stable and finite Morse index solutions on $R^n$or on bounded domains with small diffusion ,, Trans. Amer. Math. Soc., 357 (2005), 1225. doi: 10.1090/S0002-9947-04-03543-3. Google Scholar [6] H. Dang, P. C. Fife and L. A. Peletier, Saddle solutions of the bistable diffusion equation,, Z. Angew. Math. Phys., 43 (1992), 984. doi: 10.1007/BF00916424. Google Scholar [7] M. del Pino, M. Kowalczyk and F. Pacard, Moduli space theory for the Allen-Cahn equation in the plane,, Trans. Amer. Math. Soc., 365 (2013), 721. doi: 10.1090/S0002-9947-2012-05594-2. Google Scholar [8] M. del Pino, M. Kowalczyk, F. Pacard and J. Wei, Multiple-end solutions to the Allen-Cahn equation in $\mathbbR^2$,, J. Funct. Anal., 258 (2010), 458. doi: 10.1016/j.jfa.2009.04.020. Google Scholar [9] M. del Pino, M. Kowalczyk and J. Wei, On De Giorgi's in dimension $N\geq 9$,, Ann. of Math. (2), 174 (2011), 1485. doi: 10.4007/annals.2011.174.3.3. Google Scholar [10] A. Farina, Symmetry for solutions of semilinear elliptic equations in $R^N$ and related conjectures,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 10 (1999), 255. Google Scholar [11] D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three-manifolds,, Invent. Math., 82 (1985), 121. doi: 10.1007/BF01394782. Google Scholar [12] N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems,, Math. Ann., 311 (1998), 481. doi: 10.1007/s002080050196. Google Scholar [13] C. Gui, Hamiltonian identities for elliptic partial differential equations,, J. Funct. Anal., 254 (2008), 904. doi: 10.1016/j.jfa.2007.10.015. Google Scholar [14] C. Gui, Even symmetry of some entire solutions to the Allen-Cahn equation in two dimensions,, J. Differential Equations, 252 (2012), 5853. doi: 10.1016/j.jde.2012.03.004. Google Scholar [15] H. Karcher, Embedded minimal surfaces derived from Scherk's examples,, Manuscripta Math., 62 (1988), 83. doi: 10.1007/BF01258269. Google Scholar [16] B. Kostant, The solution to a generalized Toda lattice and representation theory,, Adv. in Math., 34 (1979), 195. doi: 10.1016/0001-8708(79)90057-4. Google Scholar [17] M. Kowalczyk and Y. Liu, Nondegeneracy of the saddle solution of the Allen-Cahn equation,, Proc. Amer. Math. Soc., 139 (2011), 43. doi: 10.1090/S0002-9939-2011-11217-6. Google Scholar [18] M. Kowalczyk, Y. Liu and F. Pacard, The classification of four ended solutions to the Allen-Cahn equation on the plane,, preprint, (2011). Google Scholar [19] M. Kowalczyk, Y. Liu and F. Pacard, The space of 4-ended solutions to the Allen-Cahn equation in the plane,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 761. doi: 10.1016/j.anihpc.2012.04.003. Google Scholar [20] R. Kusner, R. Mazzeo and D. Pollack, The moduli space of complete embedded constant mean curvature surfaces,, Geom. Funct. Anal., 6 (1996), 120. doi: 10.1007/BF02246769. Google Scholar [21] R. Mazzeo and D. Pollack, Gluing and moduli for noncompact geometric problems,, in, (1998), 17. Google Scholar [22] R. Mazzeo, D. Pollack and K. Uhlenbeck, Moduli spaces of singular Yamabe metrics,, J. Amer. Math. Soc., 9 (1996), 303. doi: 10.1090/S0894-0347-96-00208-1. Google Scholar [23] W. H. Meeks, III and M. Wolf, Minimal surfaces with the area growth of two planes: The case of infinite symmetry,, J. Amer. Math. Soc., 20 (2007), 441. doi: 10.1090/S0894-0347-06-00537-6. Google Scholar [24] J. Moser, Finitely many mass points on the line under the influence of an exponential potential-an integrable system,, in, 38 (1975), 467. Google Scholar [25] A. F. Nikiforov and V. B. Uvarov, "Special Functions of Mathematical Physics,", Birkhäuser Verlag, (1988). Google Scholar [26] F. Pacard and J. Wei, Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones,, J. Funct. Anal. to appear, (2011). Google Scholar [27] J. Pérez and M. Traizet, The classification of singly periodic minimal surfaces with genus zero and Scherk-type ends,, Trans. Amer. Math. Soc., 359 (2007), 965. doi: 10.1090/S0002-9947-06-04094-3. Google Scholar [28] O. Savin, Regularity of flat level sets in phase transitions,, Ann. of Math. (2), 169 (2009), 41. doi: 10.4007/annals.2009.169.41. Google Scholar [29] M. Schatzman, On the stability of the saddle solution of Allen-Cahn's equation,, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1241. doi: 10.1017/S0308210500030493. Google Scholar

show all references

References:
 [1] F. Alessio, A. Calamai and P. Montecchiari, Saddle-type solutions for a class of semilinear elliptic equations,, Adv. Differential Equations, 12 (2007), 361. Google Scholar [2] L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $R^3$ and a conjecture of De Giorgi,, J. Amer. Math. Soc., 13 (2000), 725. doi: 10.1090/S0894-0347-00-00345-3. Google Scholar [3] M. T. Barlow, R. F. Bass and C. Gui, The Liouville property and a conjecture of De Giorgi,, Comm. Pure Appl. Math., 53 (2000), 1007. doi: 10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.3.CO;2-L. Google Scholar [4] H. Berestycki, F. Hamel and R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations,, Duke Math. J., 103 (2000), 375. doi: 10.1215/S0012-7094-00-10331-6. Google Scholar [5] E. N. Dancer, Stable and finite Morse index solutions on $R^n$or on bounded domains with small diffusion ,, Trans. Amer. Math. Soc., 357 (2005), 1225. doi: 10.1090/S0002-9947-04-03543-3. Google Scholar [6] H. Dang, P. C. Fife and L. A. Peletier, Saddle solutions of the bistable diffusion equation,, Z. Angew. Math. Phys., 43 (1992), 984. doi: 10.1007/BF00916424. Google Scholar [7] M. del Pino, M. Kowalczyk and F. Pacard, Moduli space theory for the Allen-Cahn equation in the plane,, Trans. Amer. Math. Soc., 365 (2013), 721. doi: 10.1090/S0002-9947-2012-05594-2. Google Scholar [8] M. del Pino, M. Kowalczyk, F. Pacard and J. Wei, Multiple-end solutions to the Allen-Cahn equation in $\mathbbR^2$,, J. Funct. Anal., 258 (2010), 458. doi: 10.1016/j.jfa.2009.04.020. Google Scholar [9] M. del Pino, M. Kowalczyk and J. Wei, On De Giorgi's in dimension $N\geq 9$,, Ann. of Math. (2), 174 (2011), 1485. doi: 10.4007/annals.2011.174.3.3. Google Scholar [10] A. Farina, Symmetry for solutions of semilinear elliptic equations in $R^N$ and related conjectures,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 10 (1999), 255. Google Scholar [11] D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three-manifolds,, Invent. Math., 82 (1985), 121. doi: 10.1007/BF01394782. Google Scholar [12] N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems,, Math. Ann., 311 (1998), 481. doi: 10.1007/s002080050196. Google Scholar [13] C. Gui, Hamiltonian identities for elliptic partial differential equations,, J. Funct. Anal., 254 (2008), 904. doi: 10.1016/j.jfa.2007.10.015. Google Scholar [14] C. Gui, Even symmetry of some entire solutions to the Allen-Cahn equation in two dimensions,, J. Differential Equations, 252 (2012), 5853. doi: 10.1016/j.jde.2012.03.004. Google Scholar [15] H. Karcher, Embedded minimal surfaces derived from Scherk's examples,, Manuscripta Math., 62 (1988), 83. doi: 10.1007/BF01258269. Google Scholar [16] B. Kostant, The solution to a generalized Toda lattice and representation theory,, Adv. in Math., 34 (1979), 195. doi: 10.1016/0001-8708(79)90057-4. Google Scholar [17] M. Kowalczyk and Y. Liu, Nondegeneracy of the saddle solution of the Allen-Cahn equation,, Proc. Amer. Math. Soc., 139 (2011), 43. doi: 10.1090/S0002-9939-2011-11217-6. Google Scholar [18] M. Kowalczyk, Y. Liu and F. Pacard, The classification of four ended solutions to the Allen-Cahn equation on the plane,, preprint, (2011). Google Scholar [19] M. Kowalczyk, Y. Liu and F. Pacard, The space of 4-ended solutions to the Allen-Cahn equation in the plane,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 761. doi: 10.1016/j.anihpc.2012.04.003. Google Scholar [20] R. Kusner, R. Mazzeo and D. Pollack, The moduli space of complete embedded constant mean curvature surfaces,, Geom. Funct. Anal., 6 (1996), 120. doi: 10.1007/BF02246769. Google Scholar [21] R. Mazzeo and D. Pollack, Gluing and moduli for noncompact geometric problems,, in, (1998), 17. Google Scholar [22] R. Mazzeo, D. Pollack and K. Uhlenbeck, Moduli spaces of singular Yamabe metrics,, J. Amer. Math. Soc., 9 (1996), 303. doi: 10.1090/S0894-0347-96-00208-1. Google Scholar [23] W. H. Meeks, III and M. Wolf, Minimal surfaces with the area growth of two planes: The case of infinite symmetry,, J. Amer. Math. Soc., 20 (2007), 441. doi: 10.1090/S0894-0347-06-00537-6. Google Scholar [24] J. Moser, Finitely many mass points on the line under the influence of an exponential potential-an integrable system,, in, 38 (1975), 467. Google Scholar [25] A. F. Nikiforov and V. B. Uvarov, "Special Functions of Mathematical Physics,", Birkhäuser Verlag, (1988). Google Scholar [26] F. Pacard and J. Wei, Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones,, J. Funct. Anal. to appear, (2011). Google Scholar [27] J. Pérez and M. Traizet, The classification of singly periodic minimal surfaces with genus zero and Scherk-type ends,, Trans. Amer. Math. Soc., 359 (2007), 965. doi: 10.1090/S0002-9947-06-04094-3. Google Scholar [28] O. Savin, Regularity of flat level sets in phase transitions,, Ann. of Math. (2), 169 (2009), 41. doi: 10.4007/annals.2009.169.41. Google Scholar [29] M. Schatzman, On the stability of the saddle solution of Allen-Cahn's equation,, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1241. doi: 10.1017/S0308210500030493. Google Scholar
 [1] Christos Sourdis. On the growth of the energy of entire solutions to the vector Allen-Cahn equation. Communications on Pure & Applied Analysis, 2015, 14 (2) : 577-584. doi: 10.3934/cpaa.2015.14.577 [2] Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319 [3] Eleonora Cinti. Saddle-shaped solutions for the fractional Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 441-463. doi: 10.3934/dcdss.2018024 [4] Giorgio Fusco. Layered solutions to the vector Allen-Cahn equation in $\mathbb{R}^2$. Minimizers and heteroclinic connections. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1807-1841. doi: 10.3934/cpaa.2017088 [5] Giorgio Fusco, Francesco Leonetti, Cristina Pignotti. On the asymptotic behavior of symmetric solutions of the Allen-Cahn equation in unbounded domains in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 725-742. doi: 10.3934/dcds.2017030 [6] Yan Hu. Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 947-964. doi: 10.3934/cpaa.2016.15.947 [7] Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703 [8] Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027 [9] Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127 [10] Hirokazu Ninomiya. Entire solutions and traveling wave solutions of the Allen-Cahn-Nagumo equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2001-2019. doi: 10.3934/dcds.2019084 [11] Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015 [12] Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems & Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679 [13] Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009 [14] Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407 [15] Charles-Edouard Bréhier, Ludovic Goudenège. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4169-4190. doi: 10.3934/dcdsb.2019077 [16] Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012 [17] Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517 [18] Fang Li, Kimie Nakashima. Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1391-1420. doi: 10.3934/dcds.2012.32.1391 [19] Takeshi Ohtsuka, Ken Shirakawa, Noriaki Yamazaki. Optimal control problem for Allen-Cahn type equation associated with total variation energy. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 159-181. doi: 10.3934/dcdss.2012.5.159 [20] Isabeau Birindelli, Enrico Valdinoci. On the Allen-Cahn equation in the Grushin plane: A monotone entire solution that is not one-dimensional. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 823-838. doi: 10.3934/dcds.2011.29.823

2018 Impact Factor: 0.871

Metrics

• PDF downloads (10)
• HTML views (0)
• Cited by (0)

Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]