December  2012, 7(4): 805-836. doi: 10.3934/nhm.2012.7.805

Small populations corrections for selection-mutation models

1. 

CSCAMM and Department of Mathematics, University of Maryland, College Park, MD 20742-4015, United States

Received  March 2012 Revised  August 2012 Published  December 2012

We consider integro-differential models describing the evolution of a population structured by a quantitative trait. Individuals interact competitively, creating a strong selection pressure on the population. On the other hand, mutations are assumed to be small. Following the formalism of [20], this creates concentration phenomena, typically consisting in a sum of Dirac masses slowly evolving in time. We propose a modification to those classical models that takes the effect of small populations into accounts and corrects some abnormal behaviours.
Citation: Pierre-Emmanuel Jabin. Small populations corrections for selection-mutation models. Networks & Heterogeneous Media, 2012, 7 (4) : 805-836. doi: 10.3934/nhm.2012.7.805
References:
[1]

, M. Bardi and I. Capuzzo Dolcetta,, M, (). Google Scholar

[2]

G. Barles, "Solutions de Viscosite et Équations de Hamilton-Jacobi,", Collec. SMAI, (2002). Google Scholar

[3]

G. Barles, S. Mirrahimi and B. Perthame, Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result,, Methods Appl. Anal., 16 (2009), 321. Google Scholar

[4]

G. Barles and B. Perthame, Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics,, Recent Developments in Nonlinear Partial Differential Equations, 439 (2007), 57. doi: 10.1090/conm/439/08463. Google Scholar

[5]

R. Bürger and I. M. Bomze, Stationary distributions under mutation-selection balance: structure and properties,, Adv. Appl. Prob., 28 (1996), 227. doi: 10.2307/1427919. Google Scholar

[6]

A. Calsina and S. Cuadrado, Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics,, J. Math. Biol., 48 (2004), 135. doi: 10.1007/s00285-003-0226-6. Google Scholar

[7]

J. A. Carrillo, S. Cuadrado and B. Perthame, Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model,, Math. Biosci., 205 (2007), 137. doi: 10.1016/j.mbs.2006.09.012. Google Scholar

[8]

N. Champagnat, A microscopic interpretation for adaptive dynamics trait substitution sequence models,, Stoch. Proc. Appl., 116 (2006), 1127. doi: 10.1016/j.spa.2006.01.004. Google Scholar

[9]

N. Champagnat, R. Ferrière and G. Ben Arous, The canonical equation of adaptive dynamics: A mathematical view,, Selection, 2 (2001), 71. Google Scholar

[10]

N. Champagnat, R. Ferrière and S. Méléard, From individual stochastic processes to macroscopic models in adaptive evolution,, Stoch. Models, 24 (2008), 2. doi: 10.1080/15326340802437710. Google Scholar

[11]

N. Champagnat and P.-E. Jabin, The evolutionary limit for models of populations interacting competitively via several resources,, J. Differential Equations 251 (2011), 251 (2011), 176. doi: 10.1016/j.jde.2011.03.007. Google Scholar

[12]

N. Champagnat, P.-E. Jabin and G. Raoul, Convergence to equilibrium in competitive Lotka-Volterra and chemostat systems,, C. R. Math. Acad. Sci. Paris, 348 (2010), 1267. doi: 10.1016/j.crma.2010.11.001. Google Scholar

[13]

N. Champagnat and S. Méléard, Polymorphic evolution sequence and evolutionary branching,, To appear in Probab. Theory Relat. Fields (published online, (2010). doi: 10.1007/s00440-010-0292-9. Google Scholar

[14]

M. G. Crandall and P.-L. Lions, Users guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992). Google Scholar

[15]

R. Cressman and J. Hofbauer, Measure dynamics on a one-dimensional continuous trait space: theoretical foundations for adaptive dynamics,, Theor. Pop. Biol., 67 (2005), 47. Google Scholar

[16]

L. Desvillettes, P.-E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous structured populations,, Commun. Math. Sci., 6 (2008), 729. Google Scholar

[17]

U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes,, J. Math. Biol., 34 (1996), 579. doi: 10.1007/s002850050022. Google Scholar

[18]

O. Diekmann, A beginner's guide to adaptive dynamics. In Mathematical modelling of population dynamics,, Banach Center Publ., 63 (2004), 47. Google Scholar

[19]

O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory,, J. Math. Biol., 43 (2001), 157. doi: 10.1007/s002850170002. Google Scholar

[20]

O. Diekmann, P. E. Jabin, S. Mischler and B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach,, Theor. Popul. Biol., 67 (2005), 257. Google Scholar

[21]

S. Genieys, N. Bessonov and V. Volpert, Mathematical model of evolutionary branching,, Math. Comput. Modelling, 49 (2009), 2109. doi: 10.1016/j.mcm.2008.07.018. Google Scholar

[22]

S. A. H. Geritz, J. A. J. Metz, E. Kisdi and G. Meszéna, Dynamics of adaptation and evolutionary branching,, Phys. Rev. Lett., 78 (1997), 2024. Google Scholar

[23]

S. A. H. Geritz, E. Kisdi, G. Meszéna and J. A. J. Metz, Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree,, Evol. Ecol., 12 (1998), 35. Google Scholar

[24]

M. Gyllenberg and G. Meszéna, On the impossibility of coexistence of infinitely many strategies,, J. Math. Biol., 50 (2005), 133. doi: 10.1007/s00285-004-0283-5. Google Scholar

[25]

J. Hofbauer and R. Sigmund, Adaptive dynamics and evolutionary stability,, Applied Math. Letters, 3 (1990), 75. doi: 10.1016/0893-9659(90)90051-C. Google Scholar

[26]

P. E. Jabin and G. Raoul, Selection dynamics with competition,, J. Math. Biol., 63 (2011), 493. doi: 10.1007/s00285-010-0370-8. Google Scholar

[27]

A. Lorz, S. Mirrahimi and B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations,, Comm. Partial Differential Equations, 36 (2011), 1071. doi: 10.1080/03605302.2010.538784. Google Scholar

[28]

S. Méléard, Introduction to stochastic models for evolution,, Markov Process. Related Fields, 15 (2009), 259. Google Scholar

[29]

S. Méléard and V. C. Tran, Trait substitution sequence process and canonical equation for age-structured populations,, J. Math. Biol., 58 (2009), 881. doi: 10.1007/s00285-008-0202-2. Google Scholar

[30]

J. A. J. Metz, R. M. Nisbet and S. A. H. Geritz, How should we define 'fitness' for general ecological scenarios?,, Trends in Ecology and Evolution, 7 (1992), 198. Google Scholar

[31]

J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. A. J. Jacobs and J. S. van Heerwaarden, Adaptive Dynamics, a geometrical study of the consequences of nearly faithful reproduction,, in, (1996), 183. Google Scholar

[32]

S. Mirrahimi, G. Barles, B. Perthame and P. E. Souganidis, Singular Hamilton-Jacobi equation for the tail problem,, Submitted., (). Google Scholar

[33]

B. Perthame and M. Gauduchon, Survival thresholds and mortality rates in adaptive dynamics: Conciliating deterministic and stochastic simulations,, IMA Journal of Mathematical Medicine and Biology, (2009). doi: 10.1093/imammb/dqp018. Google Scholar

[34]

B. Perthame and S. Génieys, Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit,, Math. Model. Nat. Phenom., 2 (2007), 135. doi: 10.1051/mmnp:2008029. Google Scholar

[35]

G. Raoul, Long time evolution of populations under selection and rare mutations,, Acta Applicandae Mathematica, 114 (2011). doi: 10.1007/s10440-011-9603-0. Google Scholar

[36]

F. Yu, Stationary distributions of a model of sympatric speciation,, Ann. Appl. Probab., 17 (2007), 840. doi: 10.1214/105051606000000916. Google Scholar

show all references

References:
[1]

, M. Bardi and I. Capuzzo Dolcetta,, M, (). Google Scholar

[2]

G. Barles, "Solutions de Viscosite et Équations de Hamilton-Jacobi,", Collec. SMAI, (2002). Google Scholar

[3]

G. Barles, S. Mirrahimi and B. Perthame, Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result,, Methods Appl. Anal., 16 (2009), 321. Google Scholar

[4]

G. Barles and B. Perthame, Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics,, Recent Developments in Nonlinear Partial Differential Equations, 439 (2007), 57. doi: 10.1090/conm/439/08463. Google Scholar

[5]

R. Bürger and I. M. Bomze, Stationary distributions under mutation-selection balance: structure and properties,, Adv. Appl. Prob., 28 (1996), 227. doi: 10.2307/1427919. Google Scholar

[6]

A. Calsina and S. Cuadrado, Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics,, J. Math. Biol., 48 (2004), 135. doi: 10.1007/s00285-003-0226-6. Google Scholar

[7]

J. A. Carrillo, S. Cuadrado and B. Perthame, Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model,, Math. Biosci., 205 (2007), 137. doi: 10.1016/j.mbs.2006.09.012. Google Scholar

[8]

N. Champagnat, A microscopic interpretation for adaptive dynamics trait substitution sequence models,, Stoch. Proc. Appl., 116 (2006), 1127. doi: 10.1016/j.spa.2006.01.004. Google Scholar

[9]

N. Champagnat, R. Ferrière and G. Ben Arous, The canonical equation of adaptive dynamics: A mathematical view,, Selection, 2 (2001), 71. Google Scholar

[10]

N. Champagnat, R. Ferrière and S. Méléard, From individual stochastic processes to macroscopic models in adaptive evolution,, Stoch. Models, 24 (2008), 2. doi: 10.1080/15326340802437710. Google Scholar

[11]

N. Champagnat and P.-E. Jabin, The evolutionary limit for models of populations interacting competitively via several resources,, J. Differential Equations 251 (2011), 251 (2011), 176. doi: 10.1016/j.jde.2011.03.007. Google Scholar

[12]

N. Champagnat, P.-E. Jabin and G. Raoul, Convergence to equilibrium in competitive Lotka-Volterra and chemostat systems,, C. R. Math. Acad. Sci. Paris, 348 (2010), 1267. doi: 10.1016/j.crma.2010.11.001. Google Scholar

[13]

N. Champagnat and S. Méléard, Polymorphic evolution sequence and evolutionary branching,, To appear in Probab. Theory Relat. Fields (published online, (2010). doi: 10.1007/s00440-010-0292-9. Google Scholar

[14]

M. G. Crandall and P.-L. Lions, Users guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992). Google Scholar

[15]

R. Cressman and J. Hofbauer, Measure dynamics on a one-dimensional continuous trait space: theoretical foundations for adaptive dynamics,, Theor. Pop. Biol., 67 (2005), 47. Google Scholar

[16]

L. Desvillettes, P.-E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous structured populations,, Commun. Math. Sci., 6 (2008), 729. Google Scholar

[17]

U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes,, J. Math. Biol., 34 (1996), 579. doi: 10.1007/s002850050022. Google Scholar

[18]

O. Diekmann, A beginner's guide to adaptive dynamics. In Mathematical modelling of population dynamics,, Banach Center Publ., 63 (2004), 47. Google Scholar

[19]

O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory,, J. Math. Biol., 43 (2001), 157. doi: 10.1007/s002850170002. Google Scholar

[20]

O. Diekmann, P. E. Jabin, S. Mischler and B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach,, Theor. Popul. Biol., 67 (2005), 257. Google Scholar

[21]

S. Genieys, N. Bessonov and V. Volpert, Mathematical model of evolutionary branching,, Math. Comput. Modelling, 49 (2009), 2109. doi: 10.1016/j.mcm.2008.07.018. Google Scholar

[22]

S. A. H. Geritz, J. A. J. Metz, E. Kisdi and G. Meszéna, Dynamics of adaptation and evolutionary branching,, Phys. Rev. Lett., 78 (1997), 2024. Google Scholar

[23]

S. A. H. Geritz, E. Kisdi, G. Meszéna and J. A. J. Metz, Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree,, Evol. Ecol., 12 (1998), 35. Google Scholar

[24]

M. Gyllenberg and G. Meszéna, On the impossibility of coexistence of infinitely many strategies,, J. Math. Biol., 50 (2005), 133. doi: 10.1007/s00285-004-0283-5. Google Scholar

[25]

J. Hofbauer and R. Sigmund, Adaptive dynamics and evolutionary stability,, Applied Math. Letters, 3 (1990), 75. doi: 10.1016/0893-9659(90)90051-C. Google Scholar

[26]

P. E. Jabin and G. Raoul, Selection dynamics with competition,, J. Math. Biol., 63 (2011), 493. doi: 10.1007/s00285-010-0370-8. Google Scholar

[27]

A. Lorz, S. Mirrahimi and B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations,, Comm. Partial Differential Equations, 36 (2011), 1071. doi: 10.1080/03605302.2010.538784. Google Scholar

[28]

S. Méléard, Introduction to stochastic models for evolution,, Markov Process. Related Fields, 15 (2009), 259. Google Scholar

[29]

S. Méléard and V. C. Tran, Trait substitution sequence process and canonical equation for age-structured populations,, J. Math. Biol., 58 (2009), 881. doi: 10.1007/s00285-008-0202-2. Google Scholar

[30]

J. A. J. Metz, R. M. Nisbet and S. A. H. Geritz, How should we define 'fitness' for general ecological scenarios?,, Trends in Ecology and Evolution, 7 (1992), 198. Google Scholar

[31]

J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. A. J. Jacobs and J. S. van Heerwaarden, Adaptive Dynamics, a geometrical study of the consequences of nearly faithful reproduction,, in, (1996), 183. Google Scholar

[32]

S. Mirrahimi, G. Barles, B. Perthame and P. E. Souganidis, Singular Hamilton-Jacobi equation for the tail problem,, Submitted., (). Google Scholar

[33]

B. Perthame and M. Gauduchon, Survival thresholds and mortality rates in adaptive dynamics: Conciliating deterministic and stochastic simulations,, IMA Journal of Mathematical Medicine and Biology, (2009). doi: 10.1093/imammb/dqp018. Google Scholar

[34]

B. Perthame and S. Génieys, Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit,, Math. Model. Nat. Phenom., 2 (2007), 135. doi: 10.1051/mmnp:2008029. Google Scholar

[35]

G. Raoul, Long time evolution of populations under selection and rare mutations,, Acta Applicandae Mathematica, 114 (2011). doi: 10.1007/s10440-011-9603-0. Google Scholar

[36]

F. Yu, Stationary distributions of a model of sympatric speciation,, Ann. Appl. Probab., 17 (2007), 840. doi: 10.1214/105051606000000916. Google Scholar

[1]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[2]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[3]

Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461

[4]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[5]

María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207

[6]

Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441

[7]

Yoshikazu Giga, Przemysław Górka, Piotr Rybka. Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 493-519. doi: 10.3934/dcds.2010.26.493

[8]

Yuxiang Li. Stabilization towards the steady state for a viscous Hamilton-Jacobi equation. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1917-1924. doi: 10.3934/cpaa.2009.8.1917

[9]

Alexander Quaas, Andrei Rodríguez. Analysis of the attainment of boundary conditions for a nonlocal diffusive Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5221-5243. doi: 10.3934/dcds.2018231

[10]

Renato Iturriaga, Héctor Sánchez-Morgado. Limit of the infinite horizon discounted Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 623-635. doi: 10.3934/dcdsb.2011.15.623

[11]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[12]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[13]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[14]

Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121

[15]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[16]

Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : ⅰ-ⅲ. doi: 10.3934/dcdss.201805i

[17]

Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291

[18]

Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317

[19]

Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683

[20]

Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]