• Previous Article
    Small populations corrections for selection-mutation models
  • NHM Home
  • This Issue
  • Next Article
    Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source
December  2012, 7(4): 781-803. doi: 10.3934/nhm.2012.7.781

Singular limit of an activator-inhibitor type model

1. 

CMI, Université de Provence, 39 rue Frédéric Joliot-Curie 13453 Marseille cedex 13

Received  January 2012 Revised  November 2012 Published  December 2012

We consider a reaction-diffusion system of activator-inhibitor type arising in the theory of phase transition. It appears in biological contexts such as pattern formation in population genetics. The purpose of this work is to prove the convergence of the solution of this system to the solution of a free boundary Problem involving a motion by mean curvature.
Citation: Marie Henry. Singular limit of an activator-inhibitor type model. Networks & Heterogeneous Media, 2012, 7 (4) : 781-803. doi: 10.3934/nhm.2012.7.781
References:
[1]

M. Alfaro, D. Hilhorst and H. Matano, The singular limit of the Allen-Cahn Equation and the Fitzhugh-Nagumo system,, J. Differential Equations, 245 (2008), 505. doi: 10.1016/j.jde.2008.01.014. Google Scholar

[2]

A. Bonami, D. Hilhorst and E. Logak, Modified Motion by mean curvature: Local existence and uniqueness and qualitative properties,, Differential and Integral Equation, 3 (2000), 1371. Google Scholar

[3]

A. Bonami, D. Hilhorst, E. Logak and M. Mimura, Singular limit of a chemotaxis growth model,, Advances in Differential Equations, 6 (2001), 1173. Google Scholar

[4]

X. Chen, Generation and propagation of interfaces in reaction-diffusion systems,, Transactions of the American Mathematical society, 32 (1992), 877. doi: 10.2307/2154487. Google Scholar

[5]

P. C. Fife and L. Hsiao, The generation and propagation of internal layers,, Nonlinear Analysis TMA, 12 (1988), 19. doi: 10.1016/0362-546X(88)90010-7. Google Scholar

[6]

M. Henry, D. Hilhorst and R. Schätzle, Convergence to a viscosity solution for an advection-reaction-diffusion equation arising from a chemotaxis-growth model,, Hiroshima Math. Journal, 29 (1999), 591. Google Scholar

[7]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", American Mathematical Society, (1968). Google Scholar

[8]

E. Logak, Singular limit of reaction-diffusion systems and modified motion by mean curvature,, Roy. Soc. Edinburgh. Sect. A, 132 (2002), 951. doi: 10.1017/S0308210500001955. Google Scholar

[9]

Y. Nishiura and M. Mimura, Layer oscillations in reaction-diffusion systems,, SIAM J. Appl. Math., 49 (1989), 481. doi: 10.1137/0149029. Google Scholar

[10]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,", Springer-Verlag, (1984). doi: 10.1007/978-1-4612-5282-5. Google Scholar

[11]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", Springer-Verlag, (1994). Google Scholar

show all references

References:
[1]

M. Alfaro, D. Hilhorst and H. Matano, The singular limit of the Allen-Cahn Equation and the Fitzhugh-Nagumo system,, J. Differential Equations, 245 (2008), 505. doi: 10.1016/j.jde.2008.01.014. Google Scholar

[2]

A. Bonami, D. Hilhorst and E. Logak, Modified Motion by mean curvature: Local existence and uniqueness and qualitative properties,, Differential and Integral Equation, 3 (2000), 1371. Google Scholar

[3]

A. Bonami, D. Hilhorst, E. Logak and M. Mimura, Singular limit of a chemotaxis growth model,, Advances in Differential Equations, 6 (2001), 1173. Google Scholar

[4]

X. Chen, Generation and propagation of interfaces in reaction-diffusion systems,, Transactions of the American Mathematical society, 32 (1992), 877. doi: 10.2307/2154487. Google Scholar

[5]

P. C. Fife and L. Hsiao, The generation and propagation of internal layers,, Nonlinear Analysis TMA, 12 (1988), 19. doi: 10.1016/0362-546X(88)90010-7. Google Scholar

[6]

M. Henry, D. Hilhorst and R. Schätzle, Convergence to a viscosity solution for an advection-reaction-diffusion equation arising from a chemotaxis-growth model,, Hiroshima Math. Journal, 29 (1999), 591. Google Scholar

[7]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", American Mathematical Society, (1968). Google Scholar

[8]

E. Logak, Singular limit of reaction-diffusion systems and modified motion by mean curvature,, Roy. Soc. Edinburgh. Sect. A, 132 (2002), 951. doi: 10.1017/S0308210500001955. Google Scholar

[9]

Y. Nishiura and M. Mimura, Layer oscillations in reaction-diffusion systems,, SIAM J. Appl. Math., 49 (1989), 481. doi: 10.1137/0149029. Google Scholar

[10]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,", Springer-Verlag, (1984). doi: 10.1007/978-1-4612-5282-5. Google Scholar

[11]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", Springer-Verlag, (1994). Google Scholar

[1]

Ricardo Enguiça, Andrea Gavioli, Luís Sanchez. A class of singular first order differential equations with applications in reaction-diffusion. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 173-191. doi: 10.3934/dcds.2013.33.173

[2]

Brian D. Ewald, Roger Témam. Maximum principles for the primitive equations of the atmosphere. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 343-362. doi: 10.3934/dcds.2001.7.343

[3]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[4]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[5]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

[6]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-21. doi: 10.3934/dcdss.2020083

[7]

Chiun-Chuan Chen, Li-Chang Hung. An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1503-1521. doi: 10.3934/dcdsb.2018054

[8]

Peter E. Kloeden, Thomas Lorenz, Meihua Yang. Reaction-diffusion equations with a switched--off reaction zone. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1907-1933. doi: 10.3934/cpaa.2014.13.1907

[9]

Jacson Simsen, Mariza Stefanello Simsen, Marcos Roberto Teixeira Primo. Reaction-Diffusion equations with spatially variable exponents and large diffusion. Communications on Pure & Applied Analysis, 2016, 15 (2) : 495-506. doi: 10.3934/cpaa.2016.15.495

[10]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

[11]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[12]

Antoine Mellet, Jean-Michel Roquejoffre, Yannick Sire. Generalized fronts for one-dimensional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 303-312. doi: 10.3934/dcds.2010.26.303

[13]

Matthieu Alfaro, Thomas Giletti. Varying the direction of propagation in reaction-diffusion equations in periodic media. Networks & Heterogeneous Media, 2016, 11 (3) : 369-393. doi: 10.3934/nhm.2016001

[14]

Wei Wang, Anthony Roberts. Macroscopic discrete modelling of stochastic reaction-diffusion equations on a periodic domain. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 253-273. doi: 10.3934/dcds.2011.31.253

[15]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

[16]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[17]

Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011

[18]

Filipa Caetano, Martin J. Gander, Laurence Halpern, Jérémie Szeftel. Schwarz waveform relaxation algorithms for semilinear reaction-diffusion equations. Networks & Heterogeneous Media, 2010, 5 (3) : 487-505. doi: 10.3934/nhm.2010.5.487

[19]

Toshi Ogawa. Degenerate Hopf instability in oscillatory reaction-diffusion equations. Conference Publications, 2007, 2007 (Special) : 784-793. doi: 10.3934/proc.2007.2007.784

[20]

Masaharu Taniguchi. Traveling fronts in perturbed multistable reaction-diffusion equations. Conference Publications, 2011, 2011 (Special) : 1368-1377. doi: 10.3934/proc.2011.2011.1368

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]