December  2012, 7(4): 705-740. doi: 10.3934/nhm.2012.7.705

A link between microscopic and macroscopic models of self-organized aggregation

1. 

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

2. 

Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 1-1-1 Higashimita, Tamaku, Kawasaki, Kanagawa 214-8571, Japan, Japan

3. 

FIRST, Aihara Innovative Mathematical Modelling Project, Japan Science and Technology Agency, Collaborative Research Center for Innovative Mathematical Modelling, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

Received  March 2012 Revised  July 2012 Published  December 2012

In some species, one of the roles of pheromones is to influence aggregation behavior. We first propose a macroscopic cross-diffusion model for the self-organized aggregation of German cockroaches that includes directed movement due to an aggregation pheromone. We then propose a microscopic particle model which is set into context with the macroscopic model. Our goal is to link the macroscopic and microscopic descriptions by using the singular and the hydrodynamic limit procedures. A hybrid model related to the macroscopic and microscopic models is also proposed as a cockroach aggregation model. This hybrid model assumes that each individual responds to pheromone concentration and moves by two-mode simple symmetric random walks. It shows that even though the movement of individuals is not directed, two-mode simple symmetric random walks and effect of the pheromone result in self-organized aggregation.
Citation: Tadahisa Funaki, Hirofumi Izuhara, Masayasu Mimura, Chiyori Urabe. A link between microscopic and macroscopic models of self-organized aggregation. Networks & Heterogeneous Media, 2012, 7 (4) : 705-740. doi: 10.3934/nhm.2012.7.705
References:
[1]

M. Bendahmane, T. Lepoutre, A. Marrocco and B. Perthame, Conservative cross diffusions and pattern formation through relaxation,, J. Math. Pures Appl., 92 (2009), 651. doi: 10.1016/j.matpur.2009.05.003.

[2]

S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz and E. Bonabeau, "Self-Organization in Biological Systems,", Princeton University Press, (2003).

[3]

A. De Masi, S. Luckhaus and E. Presutti, Two scales hydrodynamic limit for a model of malignant tumor cells,, Ann. Inst. H. Poincaré Probab. Statist., 43 (2007), 257. doi: 10.1016/j.anihpb.2006.03.003.

[4]

E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. E. Oldeman, B. Sandstede and X. Wang, AUTO2000: Continuation and bifurcation software for ordinary differential equations (with HomCont), ., ().

[5]

S.-I. Ei, H. Izuhara and M. Mimura, Infinite dimensional relaxation oscillation in aggregation-growth systems,, Discrete and Continuous Dynamical Systems, 17 (2012), 1859. doi: 10.3934/dcdsb.2012.17.1859.

[6]

L. C. Evans, "Partial Differential Equations,", American Mathematical Society, (1998).

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3.

[8]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I,, Jahresber Deutsch Math., 105 (2003), 103.

[9]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II,, Jahresber Deutsch Math., 106 (2004), 51.

[10]

M. Iida, M. Mimura and H. Ninomiya, Diffusion, Cross-diffusion and Competitive interaction,, J. Math. Biol., 53 (2006), 617. doi: 10.1007/s00285-006-0013-2.

[11]

S. Ishii, An aggregation pheromone of the German cockroach, Blattella germanica (L.),, Appl. Ent. Zool., 5 (1970), 33.

[12]

S. Ishii and Y. Kuwahara, An aggregation pheromone of the German cockroach Blattella germanica L. (Orthoptera: Blattelidae),, Appl. Ent. Zool., 2 (1967), 203.

[13]

S. Ishii and Y. Kuwahara, Aggregation of German Cockroach (Blattella germanica) Nymphs,, Experientia, 24 (1968), 88.

[14]

R. Jeanson, C. Rivault, J. -L. Deneubourg, S. Blanco, R. Fournier, C. Jost and G. Theraulaz, Self-organized aggregation in cockroaches,, Animal Behavior, 69 (2005), 169.

[15]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol. 26 (1970), 26 (1970), 399.

[16]

C. Kipnis and C. Landim, "Scaling Limits of Interacting Particle Systems,", Springer, (1999).

[17]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Transl. Math. Monographs, 23 (1967).

[18]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49. doi: 10.1007/BF00276035.

[19]

M. Mimura and M. Nagayama, Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability,, Chaos, 7 (1997), 817. doi: 10.1063/1.166282.

[20]

D. Morale, V. Capasso and K. Oelschläger, An interacting particle system modeling aggregation behavior: from individuals to populations,, J. Math. Biol., 50 (2005), 49. doi: 10.1007/s00285-004-0279-1.

[21]

H. Murakawa, A relation between cross-diffusion and reaction-diffusion,, Discrete and Continuous Dynamical Systems, 5 (2011), 147. doi: 10.3934/dcdss.2012.5.147.

[22]

A. Okubo and S. Levin, "Diffusion and Ecological Problems: Modern Perspectives,", Springer-Verlag, (2001).

[23]

H. G. Othmer and A. Stevens, Aggregation, blow up and collapse: The ABC's of taxis in reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 1044. doi: 10.1137/S0036139995288976.

[24]

J. E. Pearson, Complex patterns in a simple system,, Science, 261 (1993), 189.

[25]

R. Schaaf, Stationary solutions of chemotaxis systems,, Trans. AMS, 292 (1985), 531. doi: 10.2307/2000228.

[26]

A. Stevens, A stochastic cellular automaton modeling gliding and aggregation of myxobacteria,, SIAM J. Appl. Math., 61 (2000), 172. doi: 10.1137/S0036139998342053.

[27]

A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems,, SIAM J. Appl. Math., 61 (2000), 183. doi: 10.1137/S0036139998342065.

[28]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83. doi: 10.1016/0022-5193(79)90258-3.

[29]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).

show all references

References:
[1]

M. Bendahmane, T. Lepoutre, A. Marrocco and B. Perthame, Conservative cross diffusions and pattern formation through relaxation,, J. Math. Pures Appl., 92 (2009), 651. doi: 10.1016/j.matpur.2009.05.003.

[2]

S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz and E. Bonabeau, "Self-Organization in Biological Systems,", Princeton University Press, (2003).

[3]

A. De Masi, S. Luckhaus and E. Presutti, Two scales hydrodynamic limit for a model of malignant tumor cells,, Ann. Inst. H. Poincaré Probab. Statist., 43 (2007), 257. doi: 10.1016/j.anihpb.2006.03.003.

[4]

E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. E. Oldeman, B. Sandstede and X. Wang, AUTO2000: Continuation and bifurcation software for ordinary differential equations (with HomCont), ., ().

[5]

S.-I. Ei, H. Izuhara and M. Mimura, Infinite dimensional relaxation oscillation in aggregation-growth systems,, Discrete and Continuous Dynamical Systems, 17 (2012), 1859. doi: 10.3934/dcdsb.2012.17.1859.

[6]

L. C. Evans, "Partial Differential Equations,", American Mathematical Society, (1998).

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3.

[8]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I,, Jahresber Deutsch Math., 105 (2003), 103.

[9]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II,, Jahresber Deutsch Math., 106 (2004), 51.

[10]

M. Iida, M. Mimura and H. Ninomiya, Diffusion, Cross-diffusion and Competitive interaction,, J. Math. Biol., 53 (2006), 617. doi: 10.1007/s00285-006-0013-2.

[11]

S. Ishii, An aggregation pheromone of the German cockroach, Blattella germanica (L.),, Appl. Ent. Zool., 5 (1970), 33.

[12]

S. Ishii and Y. Kuwahara, An aggregation pheromone of the German cockroach Blattella germanica L. (Orthoptera: Blattelidae),, Appl. Ent. Zool., 2 (1967), 203.

[13]

S. Ishii and Y. Kuwahara, Aggregation of German Cockroach (Blattella germanica) Nymphs,, Experientia, 24 (1968), 88.

[14]

R. Jeanson, C. Rivault, J. -L. Deneubourg, S. Blanco, R. Fournier, C. Jost and G. Theraulaz, Self-organized aggregation in cockroaches,, Animal Behavior, 69 (2005), 169.

[15]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol. 26 (1970), 26 (1970), 399.

[16]

C. Kipnis and C. Landim, "Scaling Limits of Interacting Particle Systems,", Springer, (1999).

[17]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Transl. Math. Monographs, 23 (1967).

[18]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49. doi: 10.1007/BF00276035.

[19]

M. Mimura and M. Nagayama, Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability,, Chaos, 7 (1997), 817. doi: 10.1063/1.166282.

[20]

D. Morale, V. Capasso and K. Oelschläger, An interacting particle system modeling aggregation behavior: from individuals to populations,, J. Math. Biol., 50 (2005), 49. doi: 10.1007/s00285-004-0279-1.

[21]

H. Murakawa, A relation between cross-diffusion and reaction-diffusion,, Discrete and Continuous Dynamical Systems, 5 (2011), 147. doi: 10.3934/dcdss.2012.5.147.

[22]

A. Okubo and S. Levin, "Diffusion and Ecological Problems: Modern Perspectives,", Springer-Verlag, (2001).

[23]

H. G. Othmer and A. Stevens, Aggregation, blow up and collapse: The ABC's of taxis in reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 1044. doi: 10.1137/S0036139995288976.

[24]

J. E. Pearson, Complex patterns in a simple system,, Science, 261 (1993), 189.

[25]

R. Schaaf, Stationary solutions of chemotaxis systems,, Trans. AMS, 292 (1985), 531. doi: 10.2307/2000228.

[26]

A. Stevens, A stochastic cellular automaton modeling gliding and aggregation of myxobacteria,, SIAM J. Appl. Math., 61 (2000), 172. doi: 10.1137/S0036139998342053.

[27]

A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems,, SIAM J. Appl. Math., 61 (2000), 183. doi: 10.1137/S0036139998342065.

[28]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83. doi: 10.1016/0022-5193(79)90258-3.

[29]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).

[1]

Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193

[2]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[3]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435

[4]

Yi Li, Chunshan Zhao. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 185-192. doi: 10.3934/dcds.2005.12.185

[5]

Hideki Murakawa. A relation between cross-diffusion and reaction-diffusion. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 147-158. doi: 10.3934/dcdss.2012.5.147

[6]

Laurent Desvillettes, Michèle Grillot, Philippe Grillot, Simona Mancini. Study of a degenerate reaction-diffusion system arising in particle dynamics with aggregation effects. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4675-4692. doi: 10.3934/dcds.2018205

[7]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[8]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[9]

Danielle Hilhorst, Hideki Murakawa. Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks & Heterogeneous Media, 2014, 9 (4) : 669-682. doi: 10.3934/nhm.2014.9.669

[10]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[11]

Salomé Martínez, Wei-Ming Ni. Periodic solutions for a 3x 3 competitive system with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 725-746. doi: 10.3934/dcds.2006.15.725

[12]

Anotida Madzvamuse, Hussaini Ndakwo, Raquel Barreira. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2133-2170. doi: 10.3934/dcds.2016.36.2133

[13]

Anotida Madzvamuse, Raquel Barreira. Domain-growth-induced patterning for reaction-diffusion systems with linear cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2775-2801. doi: 10.3934/dcdsb.2018163

[14]

Xiulan Lai, Xingfu Zou. A reaction diffusion system modeling virus dynamics and CTLs response with chemotaxis. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2567-2585. doi: 10.3934/dcdsb.2016061

[15]

Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169

[16]

Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227

[17]

W. E. Fitzgibbon, M. Langlais, J.J. Morgan. A reaction-diffusion system modeling direct and indirect transmission of diseases. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 893-910. doi: 10.3934/dcdsb.2004.4.893

[18]

José-Francisco Rodrigues, Lisa Santos. On a constrained reaction-diffusion system related to multiphase problems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 299-319. doi: 10.3934/dcds.2009.25.299

[19]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[20]

Sebastian Aniţa, Vincenzo Capasso. Stabilization of a reaction-diffusion system modelling malaria transmission. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1673-1684. doi: 10.3934/dcdsb.2012.17.1673

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (4)

[Back to Top]