December  2012, 7(4): 661-671. doi: 10.3934/nhm.2012.7.661

Grow up and slow decay in the critical Sobolev case

1. 

Department of Applied Mathematics and Statistics, Comenius University, 84248 Bratislava, Slovak Republic

2. 

Division of Theoretical Mechanics, University of Nottingham, Nottingham NG7 2RD, United Kingdom

Received  January 2012 Revised  May 2012 Published  December 2012

We present conjectures on asymptotic behaviour of threshold solutions of the Cauchy problem for a semilinear heat equation with Sobolev critical nonlinearity. The conjectures say that, depending on the decay rate of initial data and the space dimension, the threshold solutions may grow up, stabilize, or decay to zero as $t→∞$. The rates of grow up or decay are computed formally using matched asymptotics.
Citation: Marek Fila, John R. King. Grow up and slow decay in the critical Sobolev case. Networks & Heterogeneous Media, 2012, 7 (4) : 661-671. doi: 10.3934/nhm.2012.7.661
References:
[1]

M. Fila, J. R. King, M. Winkler and E. Yanagida, Optimal lower bound of the grow-up rate for a supercritical parabolic equation,, J. Differ. Equations, 228 (2006), 339. doi: 10.1016/j.jde.2006.01.019. Google Scholar

[2]

M. Fila, J. R. King, M. Winkler and E. Yanagida, Grow-up rate of solutions of a semilinear parabolic equation with a critical exponent,, Adv. Differ. Equations, 12 (2007), 1. Google Scholar

[3]

M. Fila, J. R. King, M. Winkler and E. Yanagida, Very slow grow-up of solutions of a semi-linear parabolic equation,, Proc. Edinb. Math. Soc., 53 (2011), 1. doi: 10.1017/S0013091509001497. Google Scholar

[4]

M. Fila, H. Matano and P. Poláčik, Immediate regularization after blow-up,, SIAM J. Math. Anal., 37 (2005), 752. doi: 10.1137/040613299. Google Scholar

[5]

M. Fila and M. Winkler, Rate of convergence to a singular steady state of a supercritical parabolic equation,, J. Evol. Equations, 8 (2008), 673. doi: 10.1007/s00028-008-0400-9. Google Scholar

[6]

M. Fila, M. Winkler and E. Yanagida, Grow-up rate of solutions for a supercritical semilinear diffusion equation,, J. Differ. Equations, 205 (2004), 365. doi: 10.1016/j.jde.2004.03.009. Google Scholar

[7]

M. Fila, M. Winkler and E. Yanagida, Convergence rate for a parabolic equation with supercritical nonlinearity,, J. Dynam. Differ. Equations, 17 (2005), 249. doi: 10.1007/s10884-005-5405-2. Google Scholar

[8]

M. Fila, M. Winkler and E. Yanagida, Slow convergence to zero for a parabolic equation with supercritical nonlinearity,, Math. Annalen, 340 (2008), 477. doi: 10.1007/s00208-007-0148-5. Google Scholar

[9]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha} $,, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109. Google Scholar

[10]

V. A. Galaktionov and J. R. King, Composite structure of global unbounded solutions of nonlinear heat equations with critical Sobolev exponents,, J. Differ. Equations, 189 (2003), 199. doi: 10.1016/S0022-0396(02)00151-1. Google Scholar

[11]

V. Galaktionov and J. L. Vázquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions,, Comm. Pure Applied Math., 50 (1997), 1. doi: 10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.3.CO;2-R. Google Scholar

[12]

C. Gui, W.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $\mathbbR^n$,, Comm. Pure Appl. Math., 45 (1992), 1153. doi: 10.1002/cpa.3160450906. Google Scholar

[13]

C. Gui, W.-M. Ni and X. Wang, Further study on a nonlinear heat equation,, J. Differ. Equations, 169 (2001), 588. doi: 10.1006/jdeq.2000.3909. Google Scholar

[14]

M. Hoshino and E. Yanagida, Sharp estimates of the convergence rate for a semilinear parabolic equation with supercritical nonlinearity,, Nonlin. Anal. TMA, 69 (2008), 3136. doi: 10.1016/j.na.2007.09.007. Google Scholar

[15]

R. Ikehata, M. Ishiwata and T. Suzuki, Semilinear parabolic equation in $R^N$ associated with critical Sobolev exponent,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 69 (2010), 877. doi: 10.1016/j.anihpc.2010.01.002. Google Scholar

[16]

M. Ishiwata, On the asymptotic behavior of unbounded radial solutions for semilinear parabolic problems involving critical Sobolev exponent,, J. Differ. Equations, 249 (2010), 1466. doi: 10.1016/j.jde.2010.06.024. Google Scholar

[17]

O. Kavian, Remarks on the large time behaviour of a nonlinear diffusion equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 423. Google Scholar

[18]

T. Kawanago, Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 1. Google Scholar

[19]

H. Matano and F. Merle, Classification of type I and type II behaviors for a supercritical nonlinear heat equation,, J. Funct. Anal., 256 (2009), 992. doi: 10.1016/j.jfa.2008.05.021. Google Scholar

[20]

H. Matano and F. Merle, Threshold and generic type I behaviors for a supercritical nonlinear heat equation,, J. Funct. Anal., 261 (2011), 716. doi: 10.1016/j.jfa.2011.02.025. Google Scholar

[21]

N. Mizoguchi, On the behavior of solutions for a semilinear parabolic equation with supercritical nonlinearity,, Math. Z., 239 (2002), 215. doi: 10.1007/s002090100292. Google Scholar

[22]

N. Mizoguchi, Boundedness of global solutions for a supercritical semilinear heat equation and its applications,, Indiana Univ. Math. J., 54 (2005), 1047. doi: 10.1512/iumj.2005.54.2694. Google Scholar

[23]

W.-M. Ni, P. E. Sacks and J. Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations,, J. Differ. Equations, 54 (1984), 97. doi: 10.1016/0022-0396(84)90145-1. Google Scholar

[24]

P. Poláčik and P. Quittner, Asymptotic behavior of threshold and sub-threshold solutions of a semilinear heat equation,, Asymptotic Analysis, 57 (2008), 125. Google Scholar

[25]

P. Poláčik and E. Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation,, Math. Annalen, 327 (2003), 745. doi: 10.1007/s00208-003-0469-y. Google Scholar

[26]

P. Poláčik and E. Yanagida, Nonstabilizing solutions and grow-up set for a supercritical semilinear diffusion equation,, Diff. Int. Equations, 17 (2004), 535. Google Scholar

[27]

P. Quittner, The decay of global solutions of a semilinear heat equation,, Discrete Contin. Dynam. Systems A, 21 (2008), 307. doi: 10.3934/dcds.2008.21.307. Google Scholar

[28]

P. Quittner and P. Souplet, "Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States,", Birkhäuser Advanced Texts: Basler Lehrbücher, (2007). Google Scholar

[29]

Ph. Souplet, Sur l'asymptotique des solutions globales pour une équation de la chaleur semi-linéaire dans des domaines non bornés,, C. R. Acad. Sci. Paris Sér. I Math., 323 (1996), 877. Google Scholar

[30]

C. Stinner, Very slow convergence to zero for a supercritical semilinear parabolic equation,, Adv. Differ. Equations, 14 (2009), 1085. Google Scholar

[31]

C. Stinner, Very slow convergence rates in a semilinear parabolic equation,, NoDEA, 17 (2010), 213. doi: 10.1007/s00030-009-0050-9. Google Scholar

[32]

C. Stinner, The convergence rate for a semilinear parabolic equation with a critical exponent,, Appl. Math. Letters, 24 (2011), 454. doi: 10.1016/j.aml.2010.10.041. Google Scholar

[33]

X. Wang, On the Cauchy problem for reaction-diffusion equations,, Trans. Amer. Math. Soc., 337 (1993), 549. doi: 10.2307/2154232. Google Scholar

show all references

References:
[1]

M. Fila, J. R. King, M. Winkler and E. Yanagida, Optimal lower bound of the grow-up rate for a supercritical parabolic equation,, J. Differ. Equations, 228 (2006), 339. doi: 10.1016/j.jde.2006.01.019. Google Scholar

[2]

M. Fila, J. R. King, M. Winkler and E. Yanagida, Grow-up rate of solutions of a semilinear parabolic equation with a critical exponent,, Adv. Differ. Equations, 12 (2007), 1. Google Scholar

[3]

M. Fila, J. R. King, M. Winkler and E. Yanagida, Very slow grow-up of solutions of a semi-linear parabolic equation,, Proc. Edinb. Math. Soc., 53 (2011), 1. doi: 10.1017/S0013091509001497. Google Scholar

[4]

M. Fila, H. Matano and P. Poláčik, Immediate regularization after blow-up,, SIAM J. Math. Anal., 37 (2005), 752. doi: 10.1137/040613299. Google Scholar

[5]

M. Fila and M. Winkler, Rate of convergence to a singular steady state of a supercritical parabolic equation,, J. Evol. Equations, 8 (2008), 673. doi: 10.1007/s00028-008-0400-9. Google Scholar

[6]

M. Fila, M. Winkler and E. Yanagida, Grow-up rate of solutions for a supercritical semilinear diffusion equation,, J. Differ. Equations, 205 (2004), 365. doi: 10.1016/j.jde.2004.03.009. Google Scholar

[7]

M. Fila, M. Winkler and E. Yanagida, Convergence rate for a parabolic equation with supercritical nonlinearity,, J. Dynam. Differ. Equations, 17 (2005), 249. doi: 10.1007/s10884-005-5405-2. Google Scholar

[8]

M. Fila, M. Winkler and E. Yanagida, Slow convergence to zero for a parabolic equation with supercritical nonlinearity,, Math. Annalen, 340 (2008), 477. doi: 10.1007/s00208-007-0148-5. Google Scholar

[9]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha} $,, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109. Google Scholar

[10]

V. A. Galaktionov and J. R. King, Composite structure of global unbounded solutions of nonlinear heat equations with critical Sobolev exponents,, J. Differ. Equations, 189 (2003), 199. doi: 10.1016/S0022-0396(02)00151-1. Google Scholar

[11]

V. Galaktionov and J. L. Vázquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions,, Comm. Pure Applied Math., 50 (1997), 1. doi: 10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.3.CO;2-R. Google Scholar

[12]

C. Gui, W.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $\mathbbR^n$,, Comm. Pure Appl. Math., 45 (1992), 1153. doi: 10.1002/cpa.3160450906. Google Scholar

[13]

C. Gui, W.-M. Ni and X. Wang, Further study on a nonlinear heat equation,, J. Differ. Equations, 169 (2001), 588. doi: 10.1006/jdeq.2000.3909. Google Scholar

[14]

M. Hoshino and E. Yanagida, Sharp estimates of the convergence rate for a semilinear parabolic equation with supercritical nonlinearity,, Nonlin. Anal. TMA, 69 (2008), 3136. doi: 10.1016/j.na.2007.09.007. Google Scholar

[15]

R. Ikehata, M. Ishiwata and T. Suzuki, Semilinear parabolic equation in $R^N$ associated with critical Sobolev exponent,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 69 (2010), 877. doi: 10.1016/j.anihpc.2010.01.002. Google Scholar

[16]

M. Ishiwata, On the asymptotic behavior of unbounded radial solutions for semilinear parabolic problems involving critical Sobolev exponent,, J. Differ. Equations, 249 (2010), 1466. doi: 10.1016/j.jde.2010.06.024. Google Scholar

[17]

O. Kavian, Remarks on the large time behaviour of a nonlinear diffusion equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 423. Google Scholar

[18]

T. Kawanago, Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 1. Google Scholar

[19]

H. Matano and F. Merle, Classification of type I and type II behaviors for a supercritical nonlinear heat equation,, J. Funct. Anal., 256 (2009), 992. doi: 10.1016/j.jfa.2008.05.021. Google Scholar

[20]

H. Matano and F. Merle, Threshold and generic type I behaviors for a supercritical nonlinear heat equation,, J. Funct. Anal., 261 (2011), 716. doi: 10.1016/j.jfa.2011.02.025. Google Scholar

[21]

N. Mizoguchi, On the behavior of solutions for a semilinear parabolic equation with supercritical nonlinearity,, Math. Z., 239 (2002), 215. doi: 10.1007/s002090100292. Google Scholar

[22]

N. Mizoguchi, Boundedness of global solutions for a supercritical semilinear heat equation and its applications,, Indiana Univ. Math. J., 54 (2005), 1047. doi: 10.1512/iumj.2005.54.2694. Google Scholar

[23]

W.-M. Ni, P. E. Sacks and J. Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations,, J. Differ. Equations, 54 (1984), 97. doi: 10.1016/0022-0396(84)90145-1. Google Scholar

[24]

P. Poláčik and P. Quittner, Asymptotic behavior of threshold and sub-threshold solutions of a semilinear heat equation,, Asymptotic Analysis, 57 (2008), 125. Google Scholar

[25]

P. Poláčik and E. Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation,, Math. Annalen, 327 (2003), 745. doi: 10.1007/s00208-003-0469-y. Google Scholar

[26]

P. Poláčik and E. Yanagida, Nonstabilizing solutions and grow-up set for a supercritical semilinear diffusion equation,, Diff. Int. Equations, 17 (2004), 535. Google Scholar

[27]

P. Quittner, The decay of global solutions of a semilinear heat equation,, Discrete Contin. Dynam. Systems A, 21 (2008), 307. doi: 10.3934/dcds.2008.21.307. Google Scholar

[28]

P. Quittner and P. Souplet, "Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States,", Birkhäuser Advanced Texts: Basler Lehrbücher, (2007). Google Scholar

[29]

Ph. Souplet, Sur l'asymptotique des solutions globales pour une équation de la chaleur semi-linéaire dans des domaines non bornés,, C. R. Acad. Sci. Paris Sér. I Math., 323 (1996), 877. Google Scholar

[30]

C. Stinner, Very slow convergence to zero for a supercritical semilinear parabolic equation,, Adv. Differ. Equations, 14 (2009), 1085. Google Scholar

[31]

C. Stinner, Very slow convergence rates in a semilinear parabolic equation,, NoDEA, 17 (2010), 213. doi: 10.1007/s00030-009-0050-9. Google Scholar

[32]

C. Stinner, The convergence rate for a semilinear parabolic equation with a critical exponent,, Appl. Math. Letters, 24 (2011), 454. doi: 10.1016/j.aml.2010.10.041. Google Scholar

[33]

X. Wang, On the Cauchy problem for reaction-diffusion equations,, Trans. Amer. Math. Soc., 337 (1993), 549. doi: 10.2307/2154232. Google Scholar

[1]

Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 439-455. doi: 10.3934/dcdsb.2010.14.439

[2]

Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907

[3]

M. Ben Ayed, Abdelbaki Selmi. Asymptotic behavior and existence results for a biharmonic equation involving the critical Sobolev exponent in a five-dimensional domain. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1705-1722. doi: 10.3934/cpaa.2010.9.1705

[4]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[5]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[6]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[7]

Tomás Caraballo, I. D. Chueshov, Pedro Marín-Rubio, José Real. Existence and asymptotic behaviour for stochastic heat equations with multiplicative noise in materials with memory. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 253-270. doi: 10.3934/dcds.2007.18.253

[8]

Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393

[9]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[10]

Pavol Quittner. The decay of global solutions of a semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 307-318. doi: 10.3934/dcds.2008.21.307

[11]

Susana Merchán, Luigi Montoro, I. Peral. Optimal reaction exponent for some qualitative properties of solutions to the $p$-heat equation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 245-268. doi: 10.3934/cpaa.2015.14.245

[12]

Kazuhiro Ishige, Tatsuki Kawakami. Asymptotic behavior of solutions for some semilinear heat equations in $R^N$. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1351-1371. doi: 10.3934/cpaa.2009.8.1351

[13]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[14]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[15]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[16]

Nikos I. Kavallaris, Andrew A. Lacey, Christos V. Nikolopoulos, Dimitrios E. Tzanetis. On the quenching behaviour of a semilinear wave equation modelling MEMS technology. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1009-1037. doi: 10.3934/dcds.2015.35.1009

[17]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[18]

Zongming Guo, Xiaohong Guan, Yonggang Zhao. Uniqueness and asymptotic behavior of solutions of a biharmonic equation with supercritical exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2613-2636. doi: 10.3934/dcds.2019109

[19]

Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483

[20]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]