• Previous Article
    Preprocessing and analyzing genetic data with complex networks: An application to Obstructive Nephropathy
  • NHM Home
  • This Issue
  • Next Article
    Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems
September  2012, 7(3): 483-501. doi: 10.3934/nhm.2012.7.483

Dirichlet to Neumann maps for infinite quantum graphs

1. 

Department of Mathematics, University of Colorado at Colorado Springs, Colorado Springs, CO 80933

Received  September 2011 Revised  June 2012 Published  October 2012

The Dirichlet problem and Dirichlet to Neumann map are analyzed for elliptic equations on a large collection of infinite quantum graphs. For a dense set of continuous functions on the graph boundary, the Dirichlet to Neumann map has values in the Radon measures on the graph boundary.
Citation: Robert Carlson. Dirichlet to Neumann maps for infinite quantum graphs. Networks & Heterogeneous Media, 2012, 7 (3) : 483-501. doi: 10.3934/nhm.2012.7.483
References:
[1]

G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems,, Numerical Functional Analysis and Optimization, 25 (2004), 321. doi: 10.1081/NFA-120039655. Google Scholar

[2]

S. Avdonin and P. Kurasov, Inverse problems for quantum trees,, Inverse Probl. Imaging, 2 (2008), 1. doi: 10.3934/ipi.2008.2.1. Google Scholar

[3]

M. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method,, Inverse Problems, 20 (2004), 647. doi: 10.1088/0266-5611/20/3/002. Google Scholar

[4]

M. Brown and R. Weikard, A Borg-Levinson theorem for trees,, Proc. R. Soc. London Ser. A, 461 (2005), 3231. doi: 10.1098/rspa.2005.1513. Google Scholar

[5]

A. Calderon, On an inverse boundary value problem,, Computational and Applied Mathematics, 25 (2006), 133. doi: 10.1590/S0101-82052006000200002. Google Scholar

[6]

R. Carlson, Linear network models related to blood flow,, in, 415 (2006), 65. doi: 10.1090/conm/415/07860. Google Scholar

[7]

R. Carlson, Boundary value problems for infinite metric graphs,, in Analysis on Graphs and Its Applications, 77 (2008), 355. Google Scholar

[8]

R. Carlson, After the explosion: Dirichlet forms and boundary problems for infinite graphs,, preprint, (). Google Scholar

[9]

E. Curtis, D. Ingerman and J. Morrow, Circular planar graphs and resistor networks,, Linear Algebra Appl., 283 (1998), 115. doi: 10.1016/S0024-3795(98)10087-3. Google Scholar

[10]

P. Cartier, Fonctions harmoniques sur un arbre,, Sympos. Math, 9 (1972), 203. Google Scholar

[11]

F. Chung, "Spectral Graph Theory,'', American Mathematical Society, (1997). Google Scholar

[12]

J. Cohen, F. Colonna and D. Singman, Distributions and measures on the boundary of a tree,, Journal of Mathematical Analysis and Applications, 293 (2004), 89. doi: 10.1016/j.jmaa.2003.12.015. Google Scholar

[13]

Y. Colin de Verdiere, "Spectres de Graphes,'', Societe Mathematique de France, (1998). Google Scholar

[14]

Y. Colin de Verdiere, N. Torki-Hamza and F. Truc, Essential self-adjointness for combinatorial Schrödinger operators II-metrically noncomplete graphs,, Mathematical Physics, 14 (2011), 21. Google Scholar

[15]

P. Doyle and J. L. Snell, "Random Walks and Electric Networks,'', MAA, (1984). Google Scholar

[16]

P. Exner, J. Keating, P. Kuchment, T. Sunada and A. Teplaev, "Analysis on Graphs and Its Applications,'', American Mathematical Society, (2008). Google Scholar

[17]

G. Folland, "Real Analysis,'', John Wiley and Sons, (1984). Google Scholar

[18]

A. Georgakopoulos, Graph topologies induced by edge lengths,, Discrete Mathematics, 311 (2011), 1523. doi: 10.1016/j.disc.2011.02.012. Google Scholar

[19]

J. Hocking and G. Young, "Topology,'', Addison-Wesley, (1961). Google Scholar

[20]

P. E. T. Jorgensen and E. P. J. Pearse, Operator theory and analysis of infinite networks,, preprint, (). Google Scholar

[21]

T. Kato, "Perturbation Theory for Linear Operators,'', Springer-Verlag, (1995). Google Scholar

[22]

M. Keller and D. Lenz, Unbounded laplacians on graphs: Basic spectral properties and the heat equation,, Math. Model. Nat. Phenom., 5 (2010), 198. doi: 10.1051/mmnp/20105409. Google Scholar

[23]

P. Lax, "Functional Analysis,'', Wiley, (2002). Google Scholar

[24]

R. Lyons and Y. Peres, "Probability on Trees and Networks,'', Cambridge University Press. In preparation. , (). Google Scholar

[25]

B. Maury, D. Salort and C. Vannier, Trace theorem for trees and application to the human lungs,, Networks and Heterogeneous Media, 4 (2009), 469. Google Scholar

[26]

S. Nicaise, Some results on spectral theory over networks, applied to nerve impulse transmission,, Springer Lecture Notes in Mathematics, 1171 (1985), 532. doi: 10.1007/BFb0076584. Google Scholar

[27]

H. Royden, "Real Analysis,'', Macmillan, (1988). Google Scholar

[28]

J. Sylvester and G. Uhlmann, The Dirichlet to Neumann map and applications,, Inverse problems in partial differential equations (Arcata, (1989). Google Scholar

[29]

W. Woess, "Denumerable Markov Chains,'', European Mathematical Society, (2009). doi: 10.4171/071. Google Scholar

[30]

M. Picardello and W. Woess, Martin boundaries of random walks: ends of trees and groups,, Trans. American Math. Soc., 302 (1987), 185. doi: 10.1090/S0002-9947-1987-0887505-2. Google Scholar

[31]

D. Zelig, "Properties of Solutions of Partial Differential Equations Defined on Human Lung Shaped Domains,'', Ph.D. Thesis, (2005). Google Scholar

show all references

References:
[1]

G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems,, Numerical Functional Analysis and Optimization, 25 (2004), 321. doi: 10.1081/NFA-120039655. Google Scholar

[2]

S. Avdonin and P. Kurasov, Inverse problems for quantum trees,, Inverse Probl. Imaging, 2 (2008), 1. doi: 10.3934/ipi.2008.2.1. Google Scholar

[3]

M. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method,, Inverse Problems, 20 (2004), 647. doi: 10.1088/0266-5611/20/3/002. Google Scholar

[4]

M. Brown and R. Weikard, A Borg-Levinson theorem for trees,, Proc. R. Soc. London Ser. A, 461 (2005), 3231. doi: 10.1098/rspa.2005.1513. Google Scholar

[5]

A. Calderon, On an inverse boundary value problem,, Computational and Applied Mathematics, 25 (2006), 133. doi: 10.1590/S0101-82052006000200002. Google Scholar

[6]

R. Carlson, Linear network models related to blood flow,, in, 415 (2006), 65. doi: 10.1090/conm/415/07860. Google Scholar

[7]

R. Carlson, Boundary value problems for infinite metric graphs,, in Analysis on Graphs and Its Applications, 77 (2008), 355. Google Scholar

[8]

R. Carlson, After the explosion: Dirichlet forms and boundary problems for infinite graphs,, preprint, (). Google Scholar

[9]

E. Curtis, D. Ingerman and J. Morrow, Circular planar graphs and resistor networks,, Linear Algebra Appl., 283 (1998), 115. doi: 10.1016/S0024-3795(98)10087-3. Google Scholar

[10]

P. Cartier, Fonctions harmoniques sur un arbre,, Sympos. Math, 9 (1972), 203. Google Scholar

[11]

F. Chung, "Spectral Graph Theory,'', American Mathematical Society, (1997). Google Scholar

[12]

J. Cohen, F. Colonna and D. Singman, Distributions and measures on the boundary of a tree,, Journal of Mathematical Analysis and Applications, 293 (2004), 89. doi: 10.1016/j.jmaa.2003.12.015. Google Scholar

[13]

Y. Colin de Verdiere, "Spectres de Graphes,'', Societe Mathematique de France, (1998). Google Scholar

[14]

Y. Colin de Verdiere, N. Torki-Hamza and F. Truc, Essential self-adjointness for combinatorial Schrödinger operators II-metrically noncomplete graphs,, Mathematical Physics, 14 (2011), 21. Google Scholar

[15]

P. Doyle and J. L. Snell, "Random Walks and Electric Networks,'', MAA, (1984). Google Scholar

[16]

P. Exner, J. Keating, P. Kuchment, T. Sunada and A. Teplaev, "Analysis on Graphs and Its Applications,'', American Mathematical Society, (2008). Google Scholar

[17]

G. Folland, "Real Analysis,'', John Wiley and Sons, (1984). Google Scholar

[18]

A. Georgakopoulos, Graph topologies induced by edge lengths,, Discrete Mathematics, 311 (2011), 1523. doi: 10.1016/j.disc.2011.02.012. Google Scholar

[19]

J. Hocking and G. Young, "Topology,'', Addison-Wesley, (1961). Google Scholar

[20]

P. E. T. Jorgensen and E. P. J. Pearse, Operator theory and analysis of infinite networks,, preprint, (). Google Scholar

[21]

T. Kato, "Perturbation Theory for Linear Operators,'', Springer-Verlag, (1995). Google Scholar

[22]

M. Keller and D. Lenz, Unbounded laplacians on graphs: Basic spectral properties and the heat equation,, Math. Model. Nat. Phenom., 5 (2010), 198. doi: 10.1051/mmnp/20105409. Google Scholar

[23]

P. Lax, "Functional Analysis,'', Wiley, (2002). Google Scholar

[24]

R. Lyons and Y. Peres, "Probability on Trees and Networks,'', Cambridge University Press. In preparation. , (). Google Scholar

[25]

B. Maury, D. Salort and C. Vannier, Trace theorem for trees and application to the human lungs,, Networks and Heterogeneous Media, 4 (2009), 469. Google Scholar

[26]

S. Nicaise, Some results on spectral theory over networks, applied to nerve impulse transmission,, Springer Lecture Notes in Mathematics, 1171 (1985), 532. doi: 10.1007/BFb0076584. Google Scholar

[27]

H. Royden, "Real Analysis,'', Macmillan, (1988). Google Scholar

[28]

J. Sylvester and G. Uhlmann, The Dirichlet to Neumann map and applications,, Inverse problems in partial differential equations (Arcata, (1989). Google Scholar

[29]

W. Woess, "Denumerable Markov Chains,'', European Mathematical Society, (2009). doi: 10.4171/071. Google Scholar

[30]

M. Picardello and W. Woess, Martin boundaries of random walks: ends of trees and groups,, Trans. American Math. Soc., 302 (1987), 185. doi: 10.1090/S0002-9947-1987-0887505-2. Google Scholar

[31]

D. Zelig, "Properties of Solutions of Partial Differential Equations Defined on Human Lung Shaped Domains,'', Ph.D. Thesis, (2005). Google Scholar

[1]

Ihsane Bikri, Ronald B. Guenther, Enrique A. Thomann. The Dirichlet to Neumann map - An application to the Stokes problem in half space. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 221-230. doi: 10.3934/dcdss.2010.3.221

[2]

Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets. Conference Publications, 2007, 2007 (Special) : 181-190. doi: 10.3934/proc.2007.2007.181

[3]

Shouchuan Hu, Nikolaos S. Papageorgiou. Solutions of nonlinear nonhomogeneous Neumann and Dirichlet problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2889-2922. doi: 10.3934/cpaa.2013.12.2889

[4]

Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631

[5]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[6]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[7]

Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-22. doi: 10.3934/dcds.2019234

[8]

N. Arada, J.-P. Raymond. Time optimal problems with Dirichlet boundary controls. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1549-1570. doi: 10.3934/dcds.2003.9.1549

[9]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[10]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[11]

Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001

[12]

Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279

[13]

Vladimir P. Burskii, Alexei S. Zhedanov. On Dirichlet, Poncelet and Abel problems. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1587-1633. doi: 10.3934/cpaa.2013.12.1587

[14]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[15]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[16]

Agnid Banerjee, Nicola Garofalo. On the Dirichlet boundary value problem for the normalized $p$-laplacian evolution. Communications on Pure & Applied Analysis, 2015, 14 (1) : 1-21. doi: 10.3934/cpaa.2015.14.1

[17]

Yanni Guo, Genqi Xu, Yansha Guo. Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2491-2507. doi: 10.3934/dcdsb.2016057

[18]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[19]

Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731

[20]

Mei Ming. Weighted elliptic estimates for a mixed boundary system related to the Dirichlet-Neumann operator on a corner domain. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6039-6067. doi: 10.3934/dcds.2019264

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]