June  2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315

New numerical methods for mean field games with quadratic costs

1. 

UFR de Math, Universit, 175, rue du Chevaleret, 75013 Paris, France

Received  November 2011 Revised  March 2012 Published  June 2012

Mean field games have been introduced by J.-M. Lasry and P.-L. Lions in [13, 14, 15] as the limit case of stochastic differential games when the number of players goes to $+\infty$. In the case of quadratic costs, we present two changes of variables that allow to transform the mean field games (MFG) equations into two simpler systems of equations. The first change of variables, introduced in [11], leads to two heat equations with nonlinear source terms. The second change of variables, which is introduced for the first time in this paper, leads to two Hamilton-Jacobi-Bellman equations. Numerical methods based on these equations are presented and numerical experiments are carried out.
Citation: Olivier Guéant. New numerical methods for mean field games with quadratic costs. Networks & Heterogeneous Media, 2012, 7 (2) : 315-336. doi: 10.3934/nhm.2012.7.315
References:
[1]

Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. Control Opt., 50 (2012), 77. doi: 10.1137/100790069.

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM Journal on Numerical Analysis, 48 (2010), 1136. doi: 10.1137/090758477.

[3]

P. Cardaliaguet, Notes on mean field games,, from P.-L. Lions' lectures at Collège de France, (2010).

[4]

M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations,, Mathematics of Computation, 43 (1984), 1. doi: 10.1090/S0025-5718-1984-0744921-8.

[5]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, (2010).

[6]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games,, Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 308.

[7]

O. Guéant, Mean field games equations with quadratic hamiltonian: A specifc approach,, to appear in Mathematical Models and Methods in Applied Sciences (M3AS)., ().

[8]

O. Guéant, Mean field games with quadratic hamiltonian: A constructive scheme,, to appear in the Annals of ISDG., ().

[9]

O. Guéant, "Mean Field Games and Applications to Economics,", Ph.D thesis, (2009).

[10]

O. Guéant, A reference case for mean field games models,, Journal de Mathématiques Pures et Appliquées (9), 92 (2009), 276.

[11]

O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications,, in, 2003 (2011), 205.

[12]

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics,, Mathematical Models and Methods in Applied Sciences, 20 (2010), 567. doi: 10.1142/S0218202510004349.

[13]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Acad. Sci. Paris, 343 (2006), 619. doi: 10.1016/j.crma.2006.09.019.

[14]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Acad. Sci. Paris, 343 (2006), 679. doi: 10.1016/j.crma.2006.09.018.

[15]

J.-M. Lasry and P.-L. Lions, Mean field games,, Japanese Journal of Mathematics, 2 (2007), 229.

[16]

P.-L. Lions, Théorie des jeux à champs moyens, Cours au Collège de France., Available from: \url{http://www.college-de-france.fr/default/EN/all/equ_der/audio_video.jsp}., ().

show all references

References:
[1]

Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. Control Opt., 50 (2012), 77. doi: 10.1137/100790069.

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM Journal on Numerical Analysis, 48 (2010), 1136. doi: 10.1137/090758477.

[3]

P. Cardaliaguet, Notes on mean field games,, from P.-L. Lions' lectures at Collège de France, (2010).

[4]

M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations,, Mathematics of Computation, 43 (1984), 1. doi: 10.1090/S0025-5718-1984-0744921-8.

[5]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, (2010).

[6]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games,, Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 308.

[7]

O. Guéant, Mean field games equations with quadratic hamiltonian: A specifc approach,, to appear in Mathematical Models and Methods in Applied Sciences (M3AS)., ().

[8]

O. Guéant, Mean field games with quadratic hamiltonian: A constructive scheme,, to appear in the Annals of ISDG., ().

[9]

O. Guéant, "Mean Field Games and Applications to Economics,", Ph.D thesis, (2009).

[10]

O. Guéant, A reference case for mean field games models,, Journal de Mathématiques Pures et Appliquées (9), 92 (2009), 276.

[11]

O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications,, in, 2003 (2011), 205.

[12]

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics,, Mathematical Models and Methods in Applied Sciences, 20 (2010), 567. doi: 10.1142/S0218202510004349.

[13]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Acad. Sci. Paris, 343 (2006), 619. doi: 10.1016/j.crma.2006.09.019.

[14]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Acad. Sci. Paris, 343 (2006), 679. doi: 10.1016/j.crma.2006.09.018.

[15]

J.-M. Lasry and P.-L. Lions, Mean field games,, Japanese Journal of Mathematics, 2 (2007), 229.

[16]

P.-L. Lions, Théorie des jeux à champs moyens, Cours au Collège de France., Available from: \url{http://www.college-de-france.fr/default/EN/all/equ_der/audio_video.jsp}., ().

[1]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[2]

Xiaohai Wan, Zhilin Li. Some new finite difference methods for Helmholtz equations on irregular domains or with interfaces. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1155-1174. doi: 10.3934/dcdsb.2012.17.1155

[3]

Jitraj Saha, Nilima Das, Jitendra Kumar, Andreas Bück. Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic & Related Models, 2019, 12 (1) : 79-103. doi: 10.3934/krm.2019004

[4]

Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644

[5]

Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta. Long time average of mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 279-301. doi: 10.3934/nhm.2012.7.279

[6]

Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A model problem for Mean Field Games on networks. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4173-4192. doi: 10.3934/dcds.2015.35.4173

[7]

Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1311-1333. doi: 10.3934/dcdsb.2014.19.1311

[8]

Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou. A class of infinite horizon mean field games on networks. Networks & Heterogeneous Media, 2019, 14 (3) : 537-566. doi: 10.3934/nhm.2019021

[9]

Emmanuel Frénod. Homogenization-based numerical methods. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : i-ix. doi: 10.3934/dcdss.201605i

[10]

Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133

[11]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[12]

Emmanuel Frénod. An attempt at classifying homogenization-based numerical methods. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : i-vi. doi: 10.3934/dcdss.2015.8.1i

[13]

Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220

[14]

Timothy Blass, Rafael de la Llave. Perturbation and numerical methods for computing the minimal average energy. Networks & Heterogeneous Media, 2011, 6 (2) : 241-255. doi: 10.3934/nhm.2011.6.241

[15]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

[16]

Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243

[17]

Yves Achdou, Victor Perez. Iterative strategies for solving linearized discrete mean field games systems. Networks & Heterogeneous Media, 2012, 7 (2) : 197-217. doi: 10.3934/nhm.2012.7.197

[18]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[19]

Juan Pablo Maldonado López. Discrete time mean field games: The short-stage limit. Journal of Dynamics & Games, 2015, 2 (1) : 89-101. doi: 10.3934/jdg.2015.2.89

[20]

Ronald E. Mickens. A nonstandard finite difference scheme for the drift-diffusion system. Conference Publications, 2009, 2009 (Special) : 558-563. doi: 10.3934/proc.2009.2009.558

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]