June  2012, 7(2): 263-277. doi: 10.3934/nhm.2012.7.263

A semi-discrete approximation for a first order mean field game problem

1. 

"Sapienza", Università di Roma, Dipartimento di Scienze di Base e Applicate per l'Ingegneria, 00161 Roma

2. 

"Sapienza", Università di Roma, Dipartimento di Matematica Guido Castelnuovo, 00185 Rome, Italy

Received  November 2011 Revised  March 2012 Published  June 2012

In this article we consider a model first order mean field game problem, introduced by J.M. Lasry and P.L. Lions in [18]. Its solution $(v,m)$ can be obtained as the limit of the solutions of the second order mean field game problems, when the noise parameter tends to zero (see [18]). We propose a semi-discrete in time approximation of the system and, under natural assumptions, we prove that it is well posed and that it converges to $(v,m)$ when the discretization parameter tends to zero.
Citation: Fabio Camilli, Francisco Silva. A semi-discrete approximation for a first order mean field game problem. Networks & Heterogeneous Media, 2012, 7 (2) : 263-277. doi: 10.3934/nhm.2012.7.263
References:
[1]

Y. Achdou, F. Camilli and I. Capuzzo Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. of Control & Optimization, 50 (2012), 77. doi: 10.1137/100790069.

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM J. Numer. Anal., 48 (2010), 1136. doi: 10.1137/090758477.

[3]

J.-P. Aubin and H. Frankowska, "Set-Valued Analysis,", Systems & Control: Foundations & Applications, 2 (1990).

[4]

M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,", With appendices by Maurizio Falcone and Pierpaolo Soravia, (1997).

[5]

J. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problems,", Springer Series in Operations Research, (2000).

[6]

P. Cannarsa and C. Sinestrari, "Semiconcave functions, Hamilton-Jacobi equations, and Optimal Control,", Progress in Nonlinear Differential Equations and their Applications, 58 (2004).

[7]

Pierre Cardaliaguet, "Notes on Mean Field Games: From P.-L. Lions' Lectures at Collège de France,", Lecture Notes given at Tor Vergata, (2010).

[8]

I. Capuzzo-Dolcetta, On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming,, Appl. Math. Optim., 10 (1983), 367. doi: 10.1007/BF01448394.

[9]

I. Capuzzo-Dolcetta and M. Falcone, Discrete dynamic programming and viscosity solutions of the Bellman equation,, Analyse Non Linéaire (Perpignan, 6 (1989), 161.

[10]

I. Capuzzo-Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory,, Appl. Math. Optim., 11 (1984), 161. doi: 10.1007/BF01442176.

[11]

M. Falcone and R. Ferretti, "Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations,", MOS-SIAM Series on Optimization, ().

[12]

D. A. Gomes, Viscosity solution methods and the discrete Aubry-Mather problem,, Discrete Contin. Dyn. Syst., 13 (2005), 103. doi: 10.3934/dcds.2005.13.103.

[13]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games,, J. Math. Pures Appl. (9), 93 (2010), 308.

[14]

O. Guéant, Mean field games equations with quadratic hamiltonian: a specific approach,, \arXiv{1106.3269v1}, (2011).

[15]

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics,, Math. Models Methods Appl. Sci., 20 (2010), 567. doi: 10.1142/S0218202510004349.

[16]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Math. Acad. Sci. Paris, 343 (2006), 619. doi: 10.1016/j.crma.2006.09.019.

[17]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679. doi: 10.1016/j.crma.2006.09.019.

[18]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229.

[19]

P.-L. Lions, Cours du Collège de France., Available from: \url{http://www.college-de-france.fr}., ().

show all references

References:
[1]

Y. Achdou, F. Camilli and I. Capuzzo Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. of Control & Optimization, 50 (2012), 77. doi: 10.1137/100790069.

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM J. Numer. Anal., 48 (2010), 1136. doi: 10.1137/090758477.

[3]

J.-P. Aubin and H. Frankowska, "Set-Valued Analysis,", Systems & Control: Foundations & Applications, 2 (1990).

[4]

M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,", With appendices by Maurizio Falcone and Pierpaolo Soravia, (1997).

[5]

J. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problems,", Springer Series in Operations Research, (2000).

[6]

P. Cannarsa and C. Sinestrari, "Semiconcave functions, Hamilton-Jacobi equations, and Optimal Control,", Progress in Nonlinear Differential Equations and their Applications, 58 (2004).

[7]

Pierre Cardaliaguet, "Notes on Mean Field Games: From P.-L. Lions' Lectures at Collège de France,", Lecture Notes given at Tor Vergata, (2010).

[8]

I. Capuzzo-Dolcetta, On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming,, Appl. Math. Optim., 10 (1983), 367. doi: 10.1007/BF01448394.

[9]

I. Capuzzo-Dolcetta and M. Falcone, Discrete dynamic programming and viscosity solutions of the Bellman equation,, Analyse Non Linéaire (Perpignan, 6 (1989), 161.

[10]

I. Capuzzo-Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory,, Appl. Math. Optim., 11 (1984), 161. doi: 10.1007/BF01442176.

[11]

M. Falcone and R. Ferretti, "Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations,", MOS-SIAM Series on Optimization, ().

[12]

D. A. Gomes, Viscosity solution methods and the discrete Aubry-Mather problem,, Discrete Contin. Dyn. Syst., 13 (2005), 103. doi: 10.3934/dcds.2005.13.103.

[13]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games,, J. Math. Pures Appl. (9), 93 (2010), 308.

[14]

O. Guéant, Mean field games equations with quadratic hamiltonian: a specific approach,, \arXiv{1106.3269v1}, (2011).

[15]

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics,, Math. Models Methods Appl. Sci., 20 (2010), 567. doi: 10.1142/S0218202510004349.

[16]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Math. Acad. Sci. Paris, 343 (2006), 619. doi: 10.1016/j.crma.2006.09.019.

[17]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679. doi: 10.1016/j.crma.2006.09.019.

[18]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229.

[19]

P.-L. Lions, Cours du Collège de France., Available from: \url{http://www.college-de-france.fr}., ().

[1]

Olivier Guéant. New numerical methods for mean field games with quadratic costs. Networks & Heterogeneous Media, 2012, 7 (2) : 315-336. doi: 10.3934/nhm.2012.7.315

[2]

Salah Eddine Choutri, Boualem Djehiche, Hamidou Tembine. Optimal control and zero-sum games for Markov chains of mean-field type. Mathematical Control & Related Fields, 2019, 9 (3) : 571-605. doi: 10.3934/mcrf.2019026

[3]

Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092

[4]

Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta. Long time average of mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 279-301. doi: 10.3934/nhm.2012.7.279

[5]

Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A model problem for Mean Field Games on networks. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4173-4192. doi: 10.3934/dcds.2015.35.4173

[6]

Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1311-1333. doi: 10.3934/dcdsb.2014.19.1311

[7]

Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou. A class of infinite horizon mean field games on networks. Networks & Heterogeneous Media, 2019, 14 (3) : 537-566. doi: 10.3934/nhm.2019021

[8]

Josu Doncel, Nicolas Gast, Bruno Gaujal. Discrete mean field games: Existence of equilibria and convergence. Journal of Dynamics & Games, 2019, 0 (0) : 1-19. doi: 10.3934/jdg.2019016

[9]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[10]

Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243

[11]

Yves Achdou, Victor Perez. Iterative strategies for solving linearized discrete mean field games systems. Networks & Heterogeneous Media, 2012, 7 (2) : 197-217. doi: 10.3934/nhm.2012.7.197

[12]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[13]

Juan Pablo Maldonado López. Discrete time mean field games: The short-stage limit. Journal of Dynamics & Games, 2015, 2 (1) : 89-101. doi: 10.3934/jdg.2015.2.89

[14]

Michael Herty, Lorenzo Pareschi, Sonja Steffensen. Mean--field control and Riccati equations. Networks & Heterogeneous Media, 2015, 10 (3) : 699-715. doi: 10.3934/nhm.2015.10.699

[15]

Diogo Gomes, Marc Sedjro. One-dimensional, forward-forward mean-field games with congestion. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 901-914. doi: 10.3934/dcdss.2018054

[16]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[17]

Radoslaw Pytlak. Numerical procedure for optimal control of higher index DAEs. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 647-670. doi: 10.3934/dcds.2011.29.647

[18]

Emmanuel Trélat. Optimal control of a space shuttle, and numerical simulations. Conference Publications, 2003, 2003 (Special) : 842-851. doi: 10.3934/proc.2003.2003.842

[19]

Caojin Zhang, George Yin, Qing Zhang, Le Yi Wang. Pollution control for switching diffusion models: Approximation methods and numerical results. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-21. doi: 10.3934/dcdsb.2018310

[20]

Piernicola Bettiol. State constrained $L^\infty$ optimal control problems interpreted as differential games. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3989-4017. doi: 10.3934/dcds.2015.35.3989

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]