March  2011, 6(1): 89-109. doi: 10.3934/nhm.2011.6.89

Non-standard dynamics of elastic composites

1. 

Institute for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Lenin Ave 47, Kharkiv 61164, Ukraine

Received  April 2010 Revised  November 2010 Published  March 2011

An elastic medium with a large number of small axially symmetric solid particles is considered. It is assumed that the particles are identically oriented and under the influence of elastic medium they move translationally or rotate around symmetry axis but the direction of their symmetry axes does not change. The asymptotic behavior of small oscillations of the system is studied, when the diameters of particles and distances between the nearest particles are decreased. The equations, describing the homogenized model of the system, are derived. It is shown that the homogenized equations correspond to a non-standard dynamics of elastic medium. Namely, the homogenized stress tensor linearly depends not only on the strain tensor but also on the rotation tensor.
Citation: Maksym Berezhnyi, Evgen Khruslov. Non-standard dynamics of elastic composites. Networks & Heterogeneous Media, 2011, 6 (1) : 89-109. doi: 10.3934/nhm.2011.6.89
References:
[1]

M. A. Berezhnyy and L. V. Berlyand, Continuum limit for three-dimensional mass-spring networks and discrete Korn's inequality,, Journal of the Mechanics and Physics of Solids, 54 (2006), 635. doi: 10.1016/j.jmps.2005.09.006. Google Scholar

[2]

M. A. Berezhnyi, The asymptotic bahavior of viscous incompressible fluid small oscillations with solid interacting particles,, Journal of Mathematical Physics, 3 (2007), 135. Google Scholar

[3]

M. Berezhnyi, L. Berlyand and E. Khruslov, The homogenized model of small oscillations of complex fluids,, Networks and Heterogeneous Media, 3 (2008), 835. Google Scholar

[4]

M. Berezhnyi, "Homogenized Models of Complex Fluids,", PhD Thesis, (2009). Google Scholar

[5]

L. V. Berlyand and A. D. Okhotsimskii, Averaged description of an elastic medium with a large number of small absolutely rigid inclusions,, Dokl. Akad. Nauk SSSR, 268 (1983), 317. Google Scholar

[6]

L. Berlyand and E. Khruslov, Homogenized non-Newtonian viscoelastic rheology of a suspension of interacting particles in a viscous Newtonian fluid,, SIAM, 64 (2004), 1002. doi: i:10.1137/S0036139902403913. Google Scholar

[7]

E. Cosserat et F. Cosserat, "Théorie des Corps Deformables,", Hermann, (1909). Google Scholar

[8]

V. A. Ditkin and A. P. Prudnikov, "Integral Transforms and Operational Calculus,", Oxford; New York: Pergamon, (1965). Google Scholar

[9]

G. Grioli, Ellasticá asymmetrica,, Annali di matematica pura ed applicata, 4 (1960), 389. doi: 10.1007/BF02414525. Google Scholar

[10]

T. Kato, "Perturbation Theory for Linear Operators,", Springer, (1995). Google Scholar

[11]

L. D. Landau and E. M. Lifshitz, "Course of Theoretical Physics. Quantum Mechanics. Non-relativistic Theory,", London: Pergamon, (1958). Google Scholar

[12]

A. I. Leonov, Algebraic theory of linear viscoelastic nematodynamics,, Mathematical Physics, 11 (2008), 87. doi: 10.1007/s11040-008-9041-z. Google Scholar

[13]

V. Marchenko and E. Khruslov, "Homogenization of Partial Differential Equations,", Birkh\, (2006). Google Scholar

[14]

A. I. Marcushevich, "Theory of Analytic Functions: Brief Course,", Mir, (1983). Google Scholar

[15]

R. D. Mindlin and H. F. Tiersten, Effects of couple-stresses in linear elasticity,, Archive for Rational Mechanics and Analysis, 11 (1962), 415. doi: 10.1007/BF00253946. Google Scholar

[16]

O. A. Oleinic, A. S. Shamaev and G. A. Iosif'yan, "Mathematical Problems in Elasticity and Homogenization,", in, 26 (1992). Google Scholar

[17]

I. Y. Smolin, P. V. Makarov, D. V. Shmick and I. V. Savlevich, A micropolar model of plastic deformation of polycrystals at the mesolevel,, Computational Materials Science, 19 (2000), 133. doi: 10.1016/S0927-0256(00)00148-8. Google Scholar

[18]

X. Zhang and P. Sharma, Inclusions and inhomogeneities in strain gradient elasticity with couple stresses and related problems,, International Journal of Solids and Structures, 42 (2005), 3833. doi: 10.1016/j.ijsolstr.2004.12.005. Google Scholar

show all references

References:
[1]

M. A. Berezhnyy and L. V. Berlyand, Continuum limit for three-dimensional mass-spring networks and discrete Korn's inequality,, Journal of the Mechanics and Physics of Solids, 54 (2006), 635. doi: 10.1016/j.jmps.2005.09.006. Google Scholar

[2]

M. A. Berezhnyi, The asymptotic bahavior of viscous incompressible fluid small oscillations with solid interacting particles,, Journal of Mathematical Physics, 3 (2007), 135. Google Scholar

[3]

M. Berezhnyi, L. Berlyand and E. Khruslov, The homogenized model of small oscillations of complex fluids,, Networks and Heterogeneous Media, 3 (2008), 835. Google Scholar

[4]

M. Berezhnyi, "Homogenized Models of Complex Fluids,", PhD Thesis, (2009). Google Scholar

[5]

L. V. Berlyand and A. D. Okhotsimskii, Averaged description of an elastic medium with a large number of small absolutely rigid inclusions,, Dokl. Akad. Nauk SSSR, 268 (1983), 317. Google Scholar

[6]

L. Berlyand and E. Khruslov, Homogenized non-Newtonian viscoelastic rheology of a suspension of interacting particles in a viscous Newtonian fluid,, SIAM, 64 (2004), 1002. doi: i:10.1137/S0036139902403913. Google Scholar

[7]

E. Cosserat et F. Cosserat, "Théorie des Corps Deformables,", Hermann, (1909). Google Scholar

[8]

V. A. Ditkin and A. P. Prudnikov, "Integral Transforms and Operational Calculus,", Oxford; New York: Pergamon, (1965). Google Scholar

[9]

G. Grioli, Ellasticá asymmetrica,, Annali di matematica pura ed applicata, 4 (1960), 389. doi: 10.1007/BF02414525. Google Scholar

[10]

T. Kato, "Perturbation Theory for Linear Operators,", Springer, (1995). Google Scholar

[11]

L. D. Landau and E. M. Lifshitz, "Course of Theoretical Physics. Quantum Mechanics. Non-relativistic Theory,", London: Pergamon, (1958). Google Scholar

[12]

A. I. Leonov, Algebraic theory of linear viscoelastic nematodynamics,, Mathematical Physics, 11 (2008), 87. doi: 10.1007/s11040-008-9041-z. Google Scholar

[13]

V. Marchenko and E. Khruslov, "Homogenization of Partial Differential Equations,", Birkh\, (2006). Google Scholar

[14]

A. I. Marcushevich, "Theory of Analytic Functions: Brief Course,", Mir, (1983). Google Scholar

[15]

R. D. Mindlin and H. F. Tiersten, Effects of couple-stresses in linear elasticity,, Archive for Rational Mechanics and Analysis, 11 (1962), 415. doi: 10.1007/BF00253946. Google Scholar

[16]

O. A. Oleinic, A. S. Shamaev and G. A. Iosif'yan, "Mathematical Problems in Elasticity and Homogenization,", in, 26 (1992). Google Scholar

[17]

I. Y. Smolin, P. V. Makarov, D. V. Shmick and I. V. Savlevich, A micropolar model of plastic deformation of polycrystals at the mesolevel,, Computational Materials Science, 19 (2000), 133. doi: 10.1016/S0927-0256(00)00148-8. Google Scholar

[18]

X. Zhang and P. Sharma, Inclusions and inhomogeneities in strain gradient elasticity with couple stresses and related problems,, International Journal of Solids and Structures, 42 (2005), 3833. doi: 10.1016/j.ijsolstr.2004.12.005. Google Scholar

[1]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[2]

Rejeb Hadiji, Ken Shirakawa. Asymptotic analysis for micromagnetics of thin films governed by indefinite material coefficients. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1345-1361. doi: 10.3934/cpaa.2010.9.1345

[3]

Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553

[4]

Huicong Li, Jingyu Li. Asymptotic behavior of Dirichlet eigenvalues on a body coated by functionally graded material. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1493-1516. doi: 10.3934/cpaa.2017071

[5]

Simone Göttlich, Sebastian Kühn, Jan Peter Ohst, Stefan Ruzika, Markus Thiemann. Evacuation dynamics influenced by spreading hazardous material. Networks & Heterogeneous Media, 2011, 6 (3) : 443-464. doi: 10.3934/nhm.2011.6.443

[6]

Toyohiko Aiki, Joost Hulshof, Nobuyuki Kenmochi, Adrian Muntean. Analysis of non-equilibrium evolution problems: Selected topics in material and life sciences. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : i-iii. doi: 10.3934/dcdss.2014.7.1i

[7]

Claude Stolz. On estimation of internal state by an optimal control approach for elastoplastic material. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 599-611. doi: 10.3934/dcdss.2016014

[8]

Agnes Lamacz, Ben Schweizer. Effective acoustic properties of a meta-material consisting of small Helmholtz resonators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 815-835. doi: 10.3934/dcdss.2017041

[9]

Rainer Picard. On a comprehensive class of linear material laws in classical mathematical physics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 339-349. doi: 10.3934/dcdss.2010.3.339

[10]

Michela Eleuteri, Jana Kopfová, Pavel Krejčí. A new phase field model for material fatigue in an oscillating elastoplastic beam. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2465-2495. doi: 10.3934/dcds.2015.35.2465

[11]

Huicong Li. Effective boundary conditions of the heat equation on a body coated by functionally graded material. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1415-1430. doi: 10.3934/dcds.2016.36.1415

[12]

Manuel Friedrich, Bernd Schmidt. On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks & Heterogeneous Media, 2015, 10 (2) : 321-342. doi: 10.3934/nhm.2015.10.321

[13]

Qiong Liu, Ahmad Reza Rezaei, Kuan Yew Wong, Mohammad Mahdi Azami. Integrated modeling and optimization of material flow and financial flow of supply chain network considering financial ratios. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 113-132. doi: 10.3934/naco.2019009

[14]

Patrick Ballard, Bernadette Miara. Formal asymptotic analysis of elastic beams and thin-walled beams: A derivation of the Vlassov equations and their generalization to the anisotropic heterogeneous case. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1547-1588. doi: 10.3934/dcdss.2019107

[15]

Grigory Panasenko, Ruxandra Stavre. Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel. Networks & Heterogeneous Media, 2010, 5 (4) : 783-812. doi: 10.3934/nhm.2010.5.783

[16]

Grigory Panasenko, Ruxandra Stavre. Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks & Heterogeneous Media, 2008, 3 (3) : 651-673. doi: 10.3934/nhm.2008.3.651

[17]

Elena Beretta, Eric Bonnetier, Elisa Francini, Anna L. Mazzucato. Small volume asymptotics for anisotropic elastic inclusions. Inverse Problems & Imaging, 2012, 6 (1) : 1-23. doi: 10.3934/ipi.2012.6.1

[18]

Michel Chipot, Senoussi Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure & Applied Analysis, 2009, 8 (1) : 179-193. doi: 10.3934/cpaa.2009.8.179

[19]

N. D. Alikakos, P. W. Bates, J. W. Cahn, P. C. Fife, G. Fusco, G. B. Tanoglu. Analysis of a corner layer problem in anisotropic interfaces. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 237-255. doi: 10.3934/dcdsb.2006.6.237

[20]

Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]