• Previous Article
    Coupling conditions for the $3\times 3$ Euler system
  • NHM Home
  • This Issue
  • Next Article
    The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift
December  2010, 5(4): 691-709. doi: 10.3934/nhm.2010.5.691

Classical solutions and feedback stabilization for the gas flow in a sequence of pipes

1. 

Lehrstuhl 2 für Angewandte Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 3, 91058 Erlangen, Germany, Germany

Received  February 2010 Revised  August 2010 Published  November 2010

We consider the subcritical flow in gas networks consisting of a finite linear sequence of pipes coupled by compressor stations. Such networks are important for the transportation of natural gas over large distances to ensure sustained gas supply. We analyse the system dynamics in terms of Riemann invariants and study stationary solutions as well as classical non-stationary solutions for a given finite time interval. Furthermore, we construct feedback laws to stabilize the system locally around a given stationary state. To do so we use a Lyapunov function and prove exponential decay with respect to the $L^2$-norm.
Citation: Markus Dick, Martin Gugat, Günter Leugering. Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Networks & Heterogeneous Media, 2010, 5 (4) : 691-709. doi: 10.3934/nhm.2010.5.691
References:
[1]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295. Google Scholar

[2]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41. Google Scholar

[3]

J. F. Bonnans and J. André, "Optimal Structure of Gas Transmission Trunklines,", Research Report available at Centre de recherche INRIA Saclay, (2009). Google Scholar

[4]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals,, SIAM J. Control Optim., 48 (2009), 2032. doi: 10.1137/080716372. Google Scholar

[5]

R. M. Colombo, M. Herty and V. Sachers, On 2 $\times$ 2 conservation laws at a junction,, SIAM J. Math. Anal., 40 (2008), 605. doi: 10.1137/070690298. Google Scholar

[6]

J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2. doi: 10.1109/TAC.2006.887903. Google Scholar

[7]

M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives,, Adv. Model. Optim., 7 (2005), 9. Google Scholar

[8]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks,, ESAIM Control Optim. Calc. Var., (2009). Google Scholar

[9]

M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization,, Netw. Heterog. Media, 5 (2010), 299. doi: 10.3934/nhm.2010.5.299. Google Scholar

[10]

M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks,, Math. Methods Appl. Sci., 33 (2010), 845. Google Scholar

[11]

M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks,, Netw. Heterog. Media, 2 (2007), 731. Google Scholar

[12]

G. Leugering and E. J. P. G. Schmidt, On the modelling and stabilization of flows in networks of open canals,, SIAM J. Control Optim., 41 (2002), 164. doi: 10.1137/S0363012900375664. Google Scholar

[13]

T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions,, Discrete Contin. Dyn. Syst., 28 (2010), 243. doi: 10.3934/dcds.2010.28.243. Google Scholar

[14]

, Nord Stream AG,, www.nord-stream.com, (). Google Scholar

[15]

A. Osiadacz, "Simulation and Analysis of Gas Networks,", Gulf Publishing Company, (1987). Google Scholar

[16]

A. Osiadacz and M. Chaczykowski, "Comparison of Isothermal and Non-Isothermal Transient Models,", Technical Report available at Warsaw University of Technology, (1998). Google Scholar

[17]

A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models,, Chemical Engineering J., 81 (2001), 41. doi: 10.1016/S1385-8947(00)00194-7. Google Scholar

[18]

, Pipeline Simulation Interest Group,, www.psig.org, (). Google Scholar

[19]

E. Sletfjerding and J. S. Gudmundsson, Friction factor in high pressure natural gas pipelines from roughness measurements,, International Gas Research Conference, (2001), 5. Google Scholar

[20]

M. C. Steinbach, On PDE solution in transient optimization of gas networks,, J. Comput. Appl. Math., 203 (2007), 345. doi: 10.1016/j.cam.2006.04.018. Google Scholar

[21]

Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems,, Chin. Ann. Math. Ser. B, 27 (2006), 643. doi: 10.1007/s11401-005-0520-2. Google Scholar

show all references

References:
[1]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295. Google Scholar

[2]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41. Google Scholar

[3]

J. F. Bonnans and J. André, "Optimal Structure of Gas Transmission Trunklines,", Research Report available at Centre de recherche INRIA Saclay, (2009). Google Scholar

[4]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals,, SIAM J. Control Optim., 48 (2009), 2032. doi: 10.1137/080716372. Google Scholar

[5]

R. M. Colombo, M. Herty and V. Sachers, On 2 $\times$ 2 conservation laws at a junction,, SIAM J. Math. Anal., 40 (2008), 605. doi: 10.1137/070690298. Google Scholar

[6]

J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2. doi: 10.1109/TAC.2006.887903. Google Scholar

[7]

M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives,, Adv. Model. Optim., 7 (2005), 9. Google Scholar

[8]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks,, ESAIM Control Optim. Calc. Var., (2009). Google Scholar

[9]

M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization,, Netw. Heterog. Media, 5 (2010), 299. doi: 10.3934/nhm.2010.5.299. Google Scholar

[10]

M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks,, Math. Methods Appl. Sci., 33 (2010), 845. Google Scholar

[11]

M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks,, Netw. Heterog. Media, 2 (2007), 731. Google Scholar

[12]

G. Leugering and E. J. P. G. Schmidt, On the modelling and stabilization of flows in networks of open canals,, SIAM J. Control Optim., 41 (2002), 164. doi: 10.1137/S0363012900375664. Google Scholar

[13]

T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions,, Discrete Contin. Dyn. Syst., 28 (2010), 243. doi: 10.3934/dcds.2010.28.243. Google Scholar

[14]

, Nord Stream AG,, www.nord-stream.com, (). Google Scholar

[15]

A. Osiadacz, "Simulation and Analysis of Gas Networks,", Gulf Publishing Company, (1987). Google Scholar

[16]

A. Osiadacz and M. Chaczykowski, "Comparison of Isothermal and Non-Isothermal Transient Models,", Technical Report available at Warsaw University of Technology, (1998). Google Scholar

[17]

A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models,, Chemical Engineering J., 81 (2001), 41. doi: 10.1016/S1385-8947(00)00194-7. Google Scholar

[18]

, Pipeline Simulation Interest Group,, www.psig.org, (). Google Scholar

[19]

E. Sletfjerding and J. S. Gudmundsson, Friction factor in high pressure natural gas pipelines from roughness measurements,, International Gas Research Conference, (2001), 5. Google Scholar

[20]

M. C. Steinbach, On PDE solution in transient optimization of gas networks,, J. Comput. Appl. Math., 203 (2007), 345. doi: 10.1016/j.cam.2006.04.018. Google Scholar

[21]

Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems,, Chin. Ann. Math. Ser. B, 27 (2006), 643. doi: 10.1007/s11401-005-0520-2. Google Scholar

[1]

Suoqin Jin, Fang-Xiang Wu, Xiufen Zou. Domain control of nonlinear networked systems and applications to complex disease networks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2169-2206. doi: 10.3934/dcdsb.2017091

[2]

Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks & Heterogeneous Media, 2006, 1 (1) : 41-56. doi: 10.3934/nhm.2006.1.41

[3]

Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering. Stationary states in gas networks. Networks & Heterogeneous Media, 2015, 10 (2) : 295-320. doi: 10.3934/nhm.2015.10.295

[4]

Michael Herty, Veronika Sachers. Adjoint calculus for optimization of gas networks. Networks & Heterogeneous Media, 2007, 2 (4) : 733-750. doi: 10.3934/nhm.2007.2.733

[5]

Uwe Helmke, Michael Schönlein. Minimum sensitivity realizations of networks of linear systems. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 241-262. doi: 10.3934/naco.2016010

[6]

Ahmadreza Argha, Steven W. Su, Lin Ye, Branko G. Celler. Optimal sparse output feedback for networked systems with parametric uncertainties. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 283-295. doi: 10.3934/naco.2019019

[7]

Michael Herty. Modeling, simulation and optimization of gas networks with compressors. Networks & Heterogeneous Media, 2007, 2 (1) : 81-97. doi: 10.3934/nhm.2007.2.81

[8]

Fabian Rüffler, Volker Mehrmann, Falk M. Hante. Optimal model switching for gas flow in pipe networks. Networks & Heterogeneous Media, 2018, 13 (4) : 641-661. doi: 10.3934/nhm.2018029

[9]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[10]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

[11]

Delio Mugnolo, René Pröpper. Gradient systems on networks. Conference Publications, 2011, 2011 (Special) : 1078-1090. doi: 10.3934/proc.2011.2011.1078

[12]

Lihui Guo, Tong Li, Gan Yin. The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term. Communications on Pure & Applied Analysis, 2017, 16 (1) : 295-310. doi: 10.3934/cpaa.2017014

[13]

Weishi Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 871-884. doi: 10.3934/dcds.2004.10.871

[14]

Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations. Networks & Heterogeneous Media, 2006, 1 (2) : 295-314. doi: 10.3934/nhm.2006.1.295

[15]

João Borges de Sousa, Bernardo Maciel, Fernando Lobo Pereira. Sensor systems on networked vehicles. Networks & Heterogeneous Media, 2009, 4 (2) : 223-247. doi: 10.3934/nhm.2009.4.223

[16]

Zhi-Qiang Shao. Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2739-2752. doi: 10.3934/cpaa.2013.12.2739

[17]

Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59

[18]

Oskar Weinberger, Peter Ashwin. From coupled networks of systems to networks of states in phase space. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 2021-2041. doi: 10.3934/dcdsb.2018193

[19]

Robert Baier, Lars Grüne, Sigurđur Freyr Hafstein. Linear programming based Lyapunov function computation for differential inclusions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 33-56. doi: 10.3934/dcdsb.2012.17.33

[20]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (24)

Other articles
by authors

[Back to Top]