# American Institute of Mathematical Sciences

December  2010, 5(4): 675-690. doi: 10.3934/nhm.2010.5.675

## Coupling conditions for the $3\times 3$ Euler system

 1 Dipartimento di Matematica, Università degli Studi di Brescia, Via Branze 38, 25123 Brescia, Italy 2 Dipartimento di Matematica e Applicazioni, Università di Milano–Bicocca, Via Cozzi 53, 20126 Milano, Italy

Received  November 2009 Revised  May 2010 Published  November 2010

This paper is devoted to the extension to the full $3\times3$ Euler system of the basic analytical properties of the equations governing a fluid flowing in a duct with varying section. First, we consider the Cauchy problem for a pipeline consisting of 2 ducts joined at a junction. Then, this result is extended to more complex pipes. A key assumption in these theorems is the boundedness of the total variation of the pipe's section. We provide explicit examples to show that this bound is necessary.
Citation: Rinaldo M. Colombo, Francesca Marcellini. Coupling conditions for the $3\times 3$ Euler system. Networks & Heterogeneous Media, 2010, 5 (4) : 675-690. doi: 10.3934/nhm.2010.5.675
##### References:
 [1] M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295. Google Scholar [2] M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41. Google Scholar [3] A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,", Oxford Lecture Series in Mathematics and its Applications \textbf{20}, 20 (2000). Google Scholar [4] R. M. Colombo and M. Garavello, On the $p$-system at a junction,, in, 426 (2007), 193. Google Scholar [5] R. M. Colombo and M. Garavello, On the 1D modeling of fluid flowing through a junction,, preprint, (2009). Google Scholar [6] R. M. Colombo and G. Guerra, On general balance laws with boundary,, J. Diff. Equations, 248 (2010), 1017. doi: 10.1016/j.jde.2009.12.002. Google Scholar [7] R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Modeling and optimal control of networks of pipes and canals,, SIAM J. Math. Anal., 48 (2009), 2032. Google Scholar [8] R. M. Colombo, M. Herty and V. Sachers, On $2\times2$ conservation laws at a junction,, SIAM J. Math. Anal., 40 (2008), 605. doi: 10.1137/070690298. Google Scholar [9] R. M. Colombo and F. Marcellini, Smooth and discontinuous junctions in the p-system,, J. Math. Anal. Appl., 361 (2010), 440. doi: 10.1016/j.jmaa.2009.07.022. Google Scholar [10] R. M. Colombo and C. Mauri, Euler system at a junction,, Journal of Hyperbolic Differential Equations, 5 (2008), 547. doi: 10.1142/S0219891608001593. Google Scholar [11] M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models,", AIMS Series on Applied Mathematics \textbf{1}, 1 (2006). Google Scholar [12] P. Goatin and P. G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 881. doi: 10.1016/j.anihpc.2004.02.002. Google Scholar [13] G. Guerra, F. Marcellini and V. Schleper, Balance laws with integrable unbounded source,, SIAM J. Math. Anal., 41 (2009), 1164. doi: 10.1137/080735436. Google Scholar [14] H. Holden and N. H. Risebro, Riemann problems with a kink,, SIAM J. Math. Anal., 30 (1999), 497. doi: 10.1137/S0036141097327033. Google Scholar [15] T. P. Liu, Nonlinear stability and instability of transonic flows through a nozzle,, Comm. Math. Phys., 83 (1982), 243. doi: 10.1007/BF01976043. Google Scholar [16] J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", Second edition, (1994). Google Scholar [17] G. B. Whitham, "Linear and Nonlinear Waves,", John Wiley & Sons Inc., (1999). Google Scholar

show all references

##### References:
 [1] M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295. Google Scholar [2] M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41. Google Scholar [3] A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,", Oxford Lecture Series in Mathematics and its Applications \textbf{20}, 20 (2000). Google Scholar [4] R. M. Colombo and M. Garavello, On the $p$-system at a junction,, in, 426 (2007), 193. Google Scholar [5] R. M. Colombo and M. Garavello, On the 1D modeling of fluid flowing through a junction,, preprint, (2009). Google Scholar [6] R. M. Colombo and G. Guerra, On general balance laws with boundary,, J. Diff. Equations, 248 (2010), 1017. doi: 10.1016/j.jde.2009.12.002. Google Scholar [7] R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Modeling and optimal control of networks of pipes and canals,, SIAM J. Math. Anal., 48 (2009), 2032. Google Scholar [8] R. M. Colombo, M. Herty and V. Sachers, On $2\times2$ conservation laws at a junction,, SIAM J. Math. Anal., 40 (2008), 605. doi: 10.1137/070690298. Google Scholar [9] R. M. Colombo and F. Marcellini, Smooth and discontinuous junctions in the p-system,, J. Math. Anal. Appl., 361 (2010), 440. doi: 10.1016/j.jmaa.2009.07.022. Google Scholar [10] R. M. Colombo and C. Mauri, Euler system at a junction,, Journal of Hyperbolic Differential Equations, 5 (2008), 547. doi: 10.1142/S0219891608001593. Google Scholar [11] M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models,", AIMS Series on Applied Mathematics \textbf{1}, 1 (2006). Google Scholar [12] P. Goatin and P. G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 881. doi: 10.1016/j.anihpc.2004.02.002. Google Scholar [13] G. Guerra, F. Marcellini and V. Schleper, Balance laws with integrable unbounded source,, SIAM J. Math. Anal., 41 (2009), 1164. doi: 10.1137/080735436. Google Scholar [14] H. Holden and N. H. Risebro, Riemann problems with a kink,, SIAM J. Math. Anal., 30 (1999), 497. doi: 10.1137/S0036141097327033. Google Scholar [15] T. P. Liu, Nonlinear stability and instability of transonic flows through a nozzle,, Comm. Math. Phys., 83 (1982), 243. doi: 10.1007/BF01976043. Google Scholar [16] J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", Second edition, (1994). Google Scholar [17] G. B. Whitham, "Linear and Nonlinear Waves,", John Wiley & Sons Inc., (1999). Google Scholar
 [1] Jens Lang, Pascal Mindt. Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks & Heterogeneous Media, 2018, 13 (1) : 177-190. doi: 10.3934/nhm.2018008 [2] Luis A. Caffarelli, Fang Hua Lin. Analysis on the junctions of domain walls. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 915-929. doi: 10.3934/dcds.2010.28.915 [3] Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644 [4] Pranay Goel, James Sneyd. Gap junctions and excitation patterns in continuum models of islets. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1969-1990. doi: 10.3934/dcdsb.2012.17.1969 [5] Adnane Azzouzi, Yves Coudière, Rodolphe Turpault, Nejib Zemzemi. A mathematical model of the Purkinje-Muscle Junctions. Mathematical Biosciences & Engineering, 2011, 8 (4) : 915-930. doi: 10.3934/mbe.2011.8.915 [6] Bertrand Haut, Georges Bastin. A second order model of road junctions in fluid models of traffic networks. Networks & Heterogeneous Media, 2007, 2 (2) : 227-253. doi: 10.3934/nhm.2007.2.227 [7] Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191 [8] Cyril Imbert, Régis Monneau. Quasi-convex Hamilton-Jacobi equations posed on junctions: The multi-dimensional case. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6405-6435. doi: 10.3934/dcds.2017278 [9] Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081 [10] Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565 [11] Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159 [12] Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010 [13] Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044 [14] Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143 [15] Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure & Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755 [16] Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73 [17] Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks & Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393 [18] Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673 [19] Rinaldo M. Colombo, Kenneth H. Karlsen, Frédéric Lagoutière, Andrea Marson. Special issue on contemporary topics in conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : i-ii. doi: 10.3934/nhm.2016.11.2i [20] Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617

2018 Impact Factor: 0.871