June  2010, 5(2): 315-334. doi: 10.3934/nhm.2010.5.315

Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks

1. 

Department of Mathematics, Tianjin University, Tianjin 300072, China, China

Received  September 2009 Revised  April 2010 Published  May 2010

A kind of planar network of strings with non-collocated terms in boundary feedback controls is considered. Suppose that the network is constituted by $n$ non-uniform strings, connected by one vibrating point mass. The displacements of these strings are continuous at the common vertex. The non-collocated terms are contained in feedback controls at exterior nodes. The well-posedness of the corresponding closed-loop system is proved. A complete spectral analysis is carried out and the asymptotic expression of the spectrum of this system operator is obtained, which implies that the asymptotic behavior of the spectrum is independent of these non-collocated terms. Then the Riesz basis property of the (generalized) eigenvectors of the system operator is proved. Thus, the spectrum determined growth condition holds. Finally, the exponential stability of a special case of this kind of network is gotten under certain conditions. In order to support these results, a numerical simulation is given.
Citation: Zhong-Jie Han, Gen-Qi Xu. Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks. Networks & Heterogeneous Media, 2010, 5 (2) : 315-334. doi: 10.3934/nhm.2010.5.315
[1]

Zhong-Jie Han, Gen-Qi Xu. Exponential decay in non-uniform porous-thermo-elasticity model of Lord-Shulman type. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 57-77. doi: 10.3934/dcdsb.2012.17.57

[2]

Yakov Pesin, Vaughn Climenhaga. Open problems in the theory of non-uniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 589-607. doi: 10.3934/dcds.2010.27.589

[3]

Boris Kalinin, Victoria Sadovskaya. Normal forms for non-uniform contractions. Journal of Modern Dynamics, 2017, 11: 341-368. doi: 10.3934/jmd.2017014

[4]

Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks & Heterogeneous Media, 2008, 3 (4) : 723-747. doi: 10.3934/nhm.2008.3.723

[5]

Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087

[6]

Zhong-Jie Han, Gen-Qi Xu. Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks & Heterogeneous Media, 2011, 6 (2) : 297-327. doi: 10.3934/nhm.2011.6.297

[7]

Grigor Nika, Bogdan Vernescu. Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1553-1564. doi: 10.3934/dcdss.2016062

[8]

Hai Huyen Dam, Wing-Kuen Ling. Optimal design of finite precision and infinite precision non-uniform cosine modulated filter bank. Journal of Industrial & Management Optimization, 2019, 15 (1) : 97-112. doi: 10.3934/jimo.2018034

[9]

Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic & Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587

[10]

Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 517-536. doi: 10.3934/dcds.2007.18.517

[11]

Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138

[12]

Sergei Avdonin, Julian Edward. Controllability for a string with attached masses and Riesz bases for asymmetric spaces. Mathematical Control & Related Fields, 2019, 9 (3) : 453-494. doi: 10.3934/mcrf.2019021

[13]

Scott W. Hansen, Rajeev Rajaram. Riesz basis property and related results for a Rao-Nakra sandwich beam. Conference Publications, 2005, 2005 (Special) : 365-375. doi: 10.3934/proc.2005.2005.365

[14]

Sergei A. Avdonin, Boris P. Belinskiy. On the basis properties of the functions arising in the boundary control problem of a string with a variable tension. Conference Publications, 2005, 2005 (Special) : 40-49. doi: 10.3934/proc.2005.2005.40

[15]

Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111

[16]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[17]

Yacine Chitour, Frédéric Grognard, Georges Bastin. Equilibria and stability analysis of a branched metabolic network with feedback inhibition. Networks & Heterogeneous Media, 2006, 1 (1) : 219-239. doi: 10.3934/nhm.2006.1.219

[18]

Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Feedback stabilization of a coupled string-beam system. Networks & Heterogeneous Media, 2009, 4 (1) : 19-34. doi: 10.3934/nhm.2009.4.19

[19]

Abdallah Ben Abdallah, Farhat Shel. Exponential stability of a general network of 1-d thermoelastic rods. Mathematical Control & Related Fields, 2012, 2 (1) : 1-16. doi: 10.3934/mcrf.2012.2.1

[20]

Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]