# American Institute of Mathematical Sciences

December  2009, 4(4): 755-788. doi: 10.3934/nhm.2009.4.755

## A mathematical model relevant for weakening of chalk reservoirs due to chemical reactions

 1 International Research Institute of Stavanger (IRIS), Prof. Olav Hanssensvei 15, NO-4068 Stavanger, Norway 2 University of Stavanger (UiS), 4036 Stavanger, Norway, Norway

Received  April 2009 Revised  August 2009 Published  October 2009

In this work a mathematical model is proposed for modeling of coupled dissolution/precipitation and transport processes relevant for the study of chalk weakening effects in carbonate reservoirs. The model is composed of a number of convection-diffusion-reaction equations, representing various ions in the water phase, coupled to some stiff ordinary differential equations (ODEs) representing species in the solid phase. More precisely, the model includes the three minerals $\text{CaCO}_3$ (calcite), $\text{CaSO}_4$ (anhydrite), and $\text{MgCO}_3$ (magnesite) in the solid phase (i.e., the rock) together with a number of ions contained in the water phase and essential for describing the dissolution/precipitation processes. Modeling of kinetics is included for the dissolution/precipitation processes, whereas thermodynamical equilibrium is assumed for the aqueous chemistry. A numerical discretization of the full model is presented. An operator splitting approach is employed where the transport effects (convection and diffusion) and chemical reactions (dissolution/precipitation) are solved in separate steps. This amounts to switching between solving a system of convection-diffusion equations and a system of ODEs. Characteristic features of the model is then explored. In particular, a first evaluation of the model is included where comparison with experimental behavior is made. For that purpose we consider a simplified system where a mixture of water and $\text{MgCl}_2$ (magnesium chloride) is injected with a constant rate in a core plug that initially is filled with pure water at a temperature of $T=130^{\circ}$ Celsius. The main characteristics of the resulting process, as predicted by the model, is precipitation of $\text{MgCO}_3$ and a corresponding dissolution of $\text{CaCO}_3$. The injection rate and the molecular diffusion coefficients are chosen in good agreement with the experimental setup, whereas the reaction rate constants are treated as parameters. In particular, by a suitable choice of reaction rate constants, the model produces results that agree well with experimental profiles for measured ion concentrations at the outlet. Thus, the model seems to offer a sound basis for further systematic investigations of more complicated precipitation/dissolution processes relevant for increased insight into chalk weakening effects in carbonate reservoirs.
Citation: Steinar Evje, Aksel Hiorth, Merete V. Madland, Reidar I. Korsnes. A mathematical model relevant for weakening of chalk reservoirs due to chemical reactions. Networks & Heterogeneous Media, 2009, 4 (4) : 755-788. doi: 10.3934/nhm.2009.4.755
 [1] Danielle Hilhorst, Hideki Murakawa. Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks & Heterogeneous Media, 2014, 9 (4) : 669-682. doi: 10.3934/nhm.2014.9.669 [2] T. L. van Noorden, I. S. Pop, M. Röger. Crystal dissolution and precipitation in porous media: L$^1$-contraction and uniqueness. Conference Publications, 2007, 2007 (Special) : 1013-1020. doi: 10.3934/proc.2007.2007.1013 [3] Cedric Galusinski, Mazen Saad. Water-gas flow in porous media. Conference Publications, 2005, 2005 (Special) : 307-316. doi: 10.3934/proc.2005.2005.307 [4] Steinar Evje, Aksel Hiorth. A mathematical model for dynamic wettability alteration controlled by water-rock chemistry. Networks & Heterogeneous Media, 2010, 5 (2) : 217-256. doi: 10.3934/nhm.2010.5.217 [5] Markus Gahn. Multi-scale modeling of processes in porous media - coupling reaction-diffusion processes in the solid and the fluid phase and on the separating interfaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6511-6531. doi: 10.3934/dcdsb.2019151 [6] Igor Pažanin, Marcone C. Pereira. On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption. Communications on Pure & Applied Analysis, 2018, 17 (2) : 579-592. doi: 10.3934/cpaa.2018031 [7] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1217-1251. doi: 10.3934/dcdsb.2013.18.1217 [8] Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427 [9] Clément Cancès. On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Networks & Heterogeneous Media, 2010, 5 (3) : 635-647. doi: 10.3934/nhm.2010.5.635 [10] Matthieu Alfaro, Thomas Giletti. Varying the direction of propagation in reaction-diffusion equations in periodic media. Networks & Heterogeneous Media, 2016, 11 (3) : 369-393. doi: 10.3934/nhm.2016001 [11] Cédric Galusinski, Mazen Saad. A nonlinear degenerate system modelling water-gas flows in porous media. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 281-308. doi: 10.3934/dcdsb.2008.9.281 [12] Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245 [13] Ioana Ciotir. Stochastic porous media equations with divergence Itô noise. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020010 [14] Ting Zhang. The modeling error of well treatment for unsteady flow in porous media. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2171-2185. doi: 10.3934/dcdsb.2015.20.2171 [15] Petr Knobloch. Error estimates for a nonlinear local projection stabilization of transient convection--diffusion--reaction equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 901-911. doi: 10.3934/dcdss.2015.8.901 [16] Qiang Du, Zhan Huang, Richard B. Lehoucq. Nonlocal convection-diffusion volume-constrained problems and jump processes. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 373-389. doi: 10.3934/dcdsb.2014.19.373 [17] Patrick De Kepper, István Szalai. An effective design method to produce stationary chemical reaction-diffusion patterns. Communications on Pure & Applied Analysis, 2012, 11 (1) : 189-207. doi: 10.3934/cpaa.2012.11.189 [18] Zhen-Hui Bu, Zhi-Cheng Wang. Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media. Communications on Pure & Applied Analysis, 2016, 15 (1) : 139-160. doi: 10.3934/cpaa.2016.15.139 [19] Youcef Amirat, Laurent Chupin, Rachid Touzani. Weak solutions to the equations of stationary magnetohydrodynamic flows in porous media. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2445-2464. doi: 10.3934/cpaa.2014.13.2445 [20] Mattia Turra. Existence and extinction in finite time for Stratonovich gradient noise porous media equations. Evolution Equations & Control Theory, 2019, 8 (4) : 867-882. doi: 10.3934/eect.2019042

2018 Impact Factor: 0.871

## Metrics

• HTML views (0)
• Cited by (7)

• on AIMS