December  2008, 3(4): 723-747. doi: 10.3934/nhm.2008.3.723

Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping

1. 

Department of Mathematics, Tianjin University, Tianjin, 300072, China

2. 

Department of Mathematics, The University of Hong Kong, Hong Kong, China

Received  February 2008 Revised  July 2008 Published  October 2008

In this paper we study a star-shaped network of Euler-Bernoulli beams, in which a new geometric condition at the common node is imposed. For the network, we give a method to assert whether or not the system is asymptotically stable. In addition, by spectral analysis of the system operator, we prove that there exists a sequence of its root vectors that forms a Riesz basis with parentheses for the Hilbert state space.
Citation: Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks & Heterogeneous Media, 2008, 3 (4) : 723-747. doi: 10.3934/nhm.2008.3.723
[1]

F. Ali Mehmeti, R. Haller-Dintelmann, V. Régnier. Dispersive waves with multiple tunnel effect on a star-shaped network. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 783-791. doi: 10.3934/dcdss.2013.6.783

[2]

Maja Miletić, Dominik Stürzer, Anton Arnold. An Euler-Bernoulli beam with nonlinear damping and a nonlinear spring at the tip. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3029-3055. doi: 10.3934/dcdsb.2015.20.3029

[3]

Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021

[4]

Farah Abou Shakra. Asymptotics of wave models for non star-shaped geometries. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 347-362. doi: 10.3934/dcdss.2014.7.347

[5]

Zhong-Jie Han, Enrique Zuazua. Decay rates for elastic-thermoelastic star-shaped networks. Networks & Heterogeneous Media, 2017, 12 (3) : 461-488. doi: 10.3934/nhm.2017020

[6]

Scott W. Hansen, Rajeev Rajaram. Riesz basis property and related results for a Rao-Nakra sandwich beam. Conference Publications, 2005, 2005 (Special) : 365-375. doi: 10.3934/proc.2005.2005.365

[7]

Denis Mercier. Spectrum analysis of a serially connected Euler-Bernoulli beams problem. Networks & Heterogeneous Media, 2009, 4 (4) : 709-730. doi: 10.3934/nhm.2009.4.709

[8]

Jong Yeoul Park, Sun Hye Park. On uniform decay for the coupled Euler-Bernoulli viscoelastic system with boundary damping. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 425-436. doi: 10.3934/dcds.2005.12.425

[9]

Takahiro Hashimoto. Nonexistence of global solutions of nonlinear Schrodinger equations in non star-shaped domains. Conference Publications, 2007, 2007 (Special) : 487-494. doi: 10.3934/proc.2007.2007.487

[10]

Helmut Harbrecht, Thorsten Hohage. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Problems & Imaging, 2009, 3 (2) : 353-371. doi: 10.3934/ipi.2009.3.353

[11]

Byung-Soo Lee. Strong convergence theorems with three-step iteration in star-shaped metric spaces. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 371-379. doi: 10.3934/naco.2011.1.371

[12]

Jason Metcalfe, Christopher D. Sogge. Global existence for high dimensional quasilinear wave equations exterior to star-shaped obstacles. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1589-1601. doi: 10.3934/dcds.2010.28.1589

[13]

Louis Tebou. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2315-2337. doi: 10.3934/dcds.2012.32.2315

[14]

Kaïs Ammari, Denis Mercier, Virginie Régnier, Julie Valein. Spectral analysis and stabilization of a chain of serially connected Euler-Bernoulli beams and strings. Communications on Pure & Applied Analysis, 2012, 11 (2) : 785-807. doi: 10.3934/cpaa.2012.11.785

[15]

Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control & Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45

[16]

Marcelo Moreira Cavalcanti. Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 675-695. doi: 10.3934/dcds.2002.8.675

[17]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[18]

Masahiro Suzuki. Asymptotic stability of a boundary layer to the Euler--Poisson equations for a multicomponent plasma. Kinetic & Related Models, 2016, 9 (3) : 587-603. doi: 10.3934/krm.2016008

[19]

Fabio A. C. C. Chalub. An asymptotic expression for the fixation probability of a mutant in star graphs. Journal of Dynamics & Games, 2016, 3 (3) : 217-223. doi: 10.3934/jdg.2016011

[20]

Yanfang Li, Zhuangyi Liu, Yang Wang. Weak stability of a laminated beam. Mathematical Control & Related Fields, 2018, 8 (3&4) : 789-808. doi: 10.3934/mcrf.2018035

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]