December  2007, 2(4): 717-731. doi: 10.3934/nhm.2007.2.717

Robust feedforward boundary control of hyperbolic conservation laws

1. 

Cemagref, UMR G-EAU, 361 rue JF Breton, F-34196 Montpellier Cedex 5, France

2. 

INRA, Unité Mathématique Informatique et Génome, UR1077, INRA-MIG, F-78350 Jouy-en-Josas, France

3. 

GREYC Equipe Auto, Université de Caen, 6 boulevard du Maréchal Juin, F-14050 Caen Cedex, France

Received  May 2007 Revised  August 2007 Published  September 2007

The paper proposes a feedforward boundary control to reject measured disturbances for systems modelled by hyperbolic partial differential equations obtained from conservation laws. The controller design is based on fre- quency domain methods. Perfect rejection of measured perturbations at one boundary is obtained by controlling the other boundary. This result is then extended to design robust open-loop controller when the model of the system is not perfectly known, e.g. in high frequencies. Frequency domain comparisons and time-domain simulations illustrates the good performance of the feedforward boundary controller.
Citation: Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717
[1]

Qiaoyi Hu, Zhixin Wu, Yumei Sun. Liouville theorems for periodic two-component shallow water systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3085-3097. doi: 10.3934/dcds.2018134

[2]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[3]

Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015

[4]

Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593

[5]

Denys Dutykh, Dimitrios Mitsotakis. On the relevance of the dam break problem in the context of nonlinear shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 799-818. doi: 10.3934/dcdsb.2010.13.799

[6]

Madalina Petcu, Roger Temam. An interface problem: The two-layer shallow water equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5327-5345. doi: 10.3934/dcds.2013.33.5327

[7]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model for the reformulated shallow water equations. Conference Publications, 2003, 2003 (Special) : 375-385. doi: 10.3934/proc.2003.2003.375

[8]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[9]

Werner Bauer, François Gay-Balmaz. Towards a geometric variational discretization of compressible fluids: The rotating shallow water equations. Journal of Computational Dynamics, 2018, 0 (0) : 1-37. doi: 10.3934/jcd.2019001

[10]

Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-54. doi: 10.3934/dcdsb.2018331

[11]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[12]

N. V. Chemetov. Nonlinear hyperbolic-elliptic systems in the bounded domain. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1079-1096. doi: 10.3934/cpaa.2011.10.1079

[13]

Pavel Drábek, Martina Langerová. Impulsive control of conservative periodic equations and systems: Variational approach. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3789-3802. doi: 10.3934/dcds.2018164

[14]

George Avalos, Roberto Triggiani. Rational decay rates for a PDE heat--structure interaction: A frequency domain approach. Evolution Equations & Control Theory, 2013, 2 (2) : 233-253. doi: 10.3934/eect.2013.2.233

[15]

Marie-Odile Bristeau, Jacques Sainte-Marie. Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 733-759. doi: 10.3934/dcdsb.2008.10.733

[16]

Denys Dutykh, Delia Ionescu-Kruse. Effects of vorticity on the travelling waves of some shallow water two-component systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5521-5541. doi: 10.3934/dcds.2019225

[17]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[18]

Andreas Hiltebrand, Siddhartha Mishra. Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks & Heterogeneous Media, 2016, 11 (1) : 145-162. doi: 10.3934/nhm.2016.11.145

[19]

Aimin Huang, Roger Temam. The nonlinear 2D subcritical inviscid shallow water equations with periodicity in one direction. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2005-2038. doi: 10.3934/cpaa.2014.13.2005

[20]

François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

[Back to Top]